Sample Calculation Safe Bearing Capacity & Safe Bearing Pressure of Well Foundation Refer - 6403, 8009(part-I) Location :- BH-1(A2), Yamuna River. 900 900 cm Diameter of Well (B) Depth of Well (d_f) 2200 cm 2200 2950 Depth of scour from ground level 1141.1 cm Sandy Soil Effective depth of Well 1058.9 cm 750 Founding Strata 300 Fine Sand with Gravel 1350 300 600 D/B 1.18 Clayey Soil (All dimensions are in cm) The Following parameters are utilised in Calculation 25 (Ref : Fig. No-1 ,Pg -11, IS : 6403-1981) Angle of Shearing Resistance of Soil (Φ) (Resricted) Saturated unit weight of foundation soil (γ_{sat}) = 0.002 Kg/Cm³ Submerged unit weight of foundation soil (γ') = 0.001 Kg/Cm³ (A) Safe Bearing Capacity Bearing Capacity Factor, 33.30 (Ref : Clause no. 5.3.1.1 , IS : 6403-1981) 48.03 Shape Factors, 1.20 (Ref : Clause no. 5.1.2.1 , IS : 6403-1981) Depth Factor , Where, $\sqrt{N\Phi} = \tan(\frac{\pi}{4}) + \frac{\Phi}{2}$ (Ref : Clause no. 5.1,2.2 , IS : 6403-1981) 1+0.1(D_t/B)xVNΦ $d_0 = d_Y$ 1.23 (Assuming water table at the EGL) Correction factor for water table (W') 0.5 Net Ultimate Bearing Capacity (q_d) $q(N_q\text{-}1)s_qd_qi_q+0.5BYN_\gamma s_\gamma d_\gamma i_\gamma W'$ 66.22 kg/cm² (Ref :Clause no. 5.3.1.1,IS : 6403-1981) Factor of Safety (FOS) 2.50 q_d /FOS Safe Bearing Capacity (q_{safe}) 26.487 kg/cm² 264.87 t/m²

0 0

```
Safe Bearing Pressure
                 Load is dispersed in soil as per 2v: 1h Principle
                 The zone of Soil within a depth of 1.5xdia of well is assumed to the involved in setlement
        For Sandy Soil Stratum:
                 N ava of the layer =
                                                                   25
                 Assuming Structural Load applied (q)
                                                                                                                1 kg/cm<sup>2</sup>
                 Pressure Increment (p) at top-layer of sandy layer involved in settlement =
                                                                                                                    1.00 kg/cm<sup>2</sup>
                 Settlement (S_i) = pBI(1-\mu2)/E
                 Where,
                                                                                 ( Ref : Clause no - 9.2.3.2 , IS : 8009 (Part -1) - 1976 )
                  Influence factor (I) =
                                                            0.85
                 Poisson's Ratio (μ) =
                                                            0.30
                                                                                 (Ref:Table no-1.16.2,Foundation Design Manual, N. V. Nayak)
                 Modulus of Elasticity( E ) =
                                                         1200(N+6)
                                                                          kp_a
                                                           37200
                                                                                                       (Ref : Bowles, J.E., Foundation Analysis &
                                                            372
                                                                        kg/cm
                                                                                                         Design, McGraw-Hill, New York, 2002)
                 Settlement (S_i) =
                                                            1.871371 cm
        For Clayey Soil Stratum:
                 Initial Void Ratio at mid-height of layer (e<sub>p</sub>) =
                                                                         0.51
                 Compression index (Cc) =
                                                                      0.3(e<sub>0</sub> - 0.27)
                                                                                                         (Ref:Clause no-9.2.2.2 IS: 8009 (Part -1)-1976)
                                                                        0.07
                 Initial effective Pressure at mid-height of layer ( Po )
                                                                                                          2.1089 kg/cm<sup>2</sup>
                                                                                                                1 kg/cm<sup>2</sup>
                 Assuming Structural Load applied (q)
                                                                                                  636172.5124
                 Area of the top layer where load applied in cm2
                                                                                                  2986476.516
                 Area of the middle layer where load applied in cm2
                 Pressure Increment (\Delta_p) in kg/cm<sup>2</sup>
                                                                                                  0.213017751
                 Thickness of soil layer involved (H,)
                                                                             600 cm
                                                                     Cc log10
                                                                                                         (Ref:Clause no-9.2.2.2 IS: 8009 (Part -1)-1976)
                        Settlement (S_{oed}) =
                                                           1.196
                                                                      cm
Depth factor & λ:
                               D/VLB
                                                                         0.85
                               VLB / D
                                                                         1.18
                                                                                                 ( Ref : Fig no - 12 , IS : 8009 (Part -1) - 1976 )
                                 L/B
                                                                         1.00
                            Depth Factor
                                                                        0.753
                                                                         0.70
                                                                                                 (Ref: Table no - 1, IS: 8009 (Part -1) - 1976)
                            Rigidity Factor
                                                                         0.80
                Settlement for 1kg / cm2
                                                                      ((S_{oed} \times \lambda) + S_i) \times Depth Factor \times Rigidity Factor
                                                                           1.63 cm
           16.3 mm Settlement caused due to
                                                                           1.00 kg / cm<sup>2</sup>
                                                                                                                                10.00 t/m<sup>2</sup>
         Hence,
             50 mm Settlement caused due to
                                                                            3.06 kg/cm3
                                                                                                                                30.65 t/m2
             75 mm Settlement caused due to
                                                                           4.60 kg / cm<sup>3</sup>
                                                                                                                                45.97 t/m<sup>2</sup>
       Allowable Bearing Pressure
         Safe Bearing Capacity ( q<sub>safe</sub> )
                                                                                                                                         264.87 t/m<sup>2</sup>
        Safe Bearing Pressure for 50mm Settlement
                                                                                                                                          30.65 t/m<sup>2</sup>
        Safe Bearing Pressure for 75mm Settlement
```

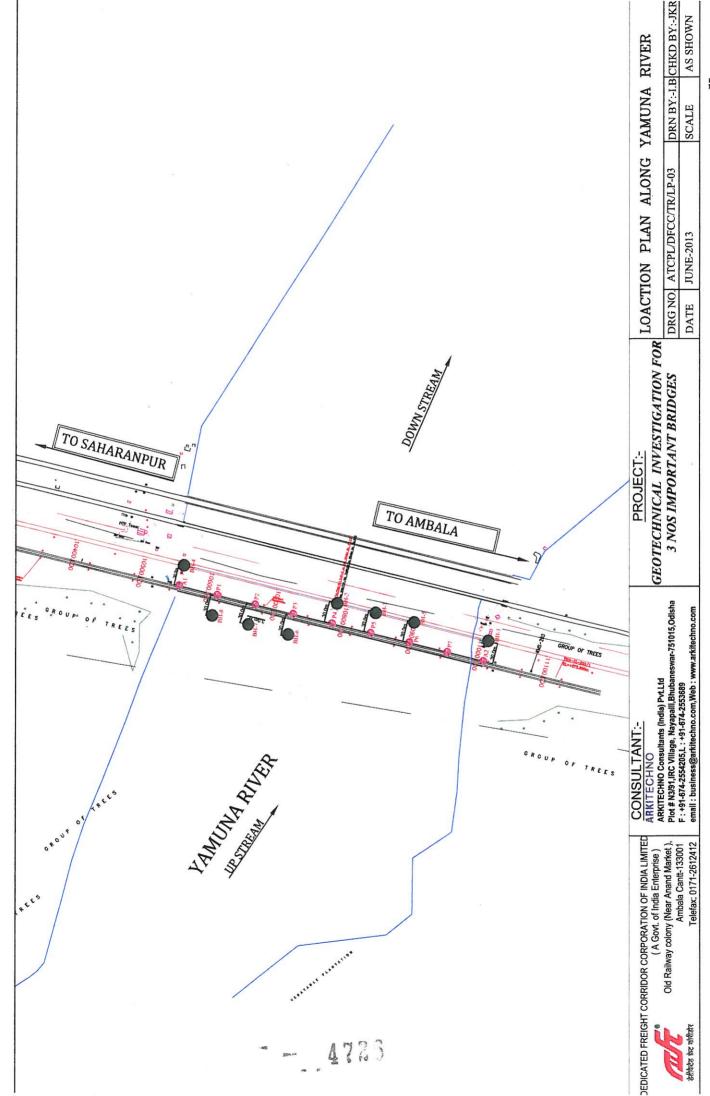
45.97 t/m2

Sample Calculation Safe Bearing Capacity & Safe Bearing Pressure of Well Foundation Loaction :-Yamuna River -BH-4(A1) 900 Diameter of Well (B) 900 cm 2200 2950 Depth of Well (d_f) 2200 cm Sandy Soil Depth of scour from ground level 1273.4 cm 750 Effective depth of Well 926.6 cm 225 D/B 1.029556 cm 225 450 1350 Clayey Soil Founding Strata Fine Sand with gravel 150 Sandy Soil N corrected 25 Angle of Shearing Resistance of Soil (Φ) (Ref : Fig. No-1, Pg -11, IS : 6403-1981) **35** ° Saturated unit weight of foundation soil $(\gamma_{sat}) =$ 0.002 Kg/Cm³ Submerged unit weight of foundation soil (γ') = 0.001 Kg/Cm³ A Safe Bearing Capacity Bearing Capacity Factor, 33.30 (Ref : Clause no. 5.3.1.1 , IS : 6403-1981) 48.03 Shape Factors, 1.20 (Ref : Clause no. 5.1.2.1 , IS : 6403-1981) 0.60 Depth Factor, Where, $\sqrt{N\Phi} = \tan(\prod/4) + \Phi/2$ (Ref : Clause no. 5.1.2.2 , IS : 6403-1981) 1+0.1(D_f/B)xVNΦ 1.20 Correction factor for water table (W') 0.5 (Assuming water table at the EGL) Net Ultimate Bearing Capacity (qd) ${\rm cNc~Sc~dci_c} + {\rm q(N_q-1)s_qd_qi_q} + 0.5{\rm BYN_7s_7d_7i_7W'}$ 74.65 kg/cm² (Ref :Clause no. 5.3.1.1,IS : 6403-1981) Factor of Safety (FOS) 2.50 q_d /FOS Safe Bearing Capacity (qsafe) 29.86 kg/cm²

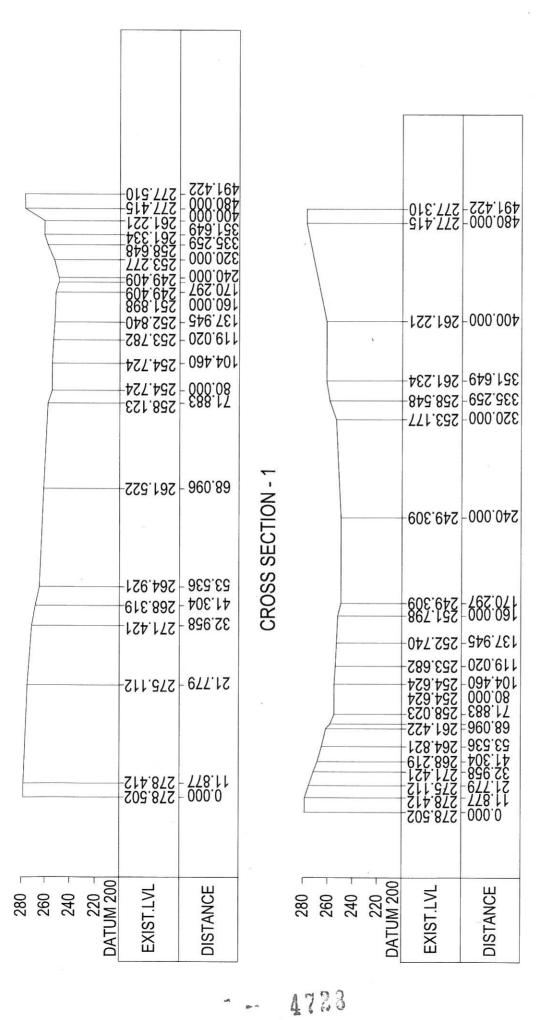
298.61 t/m²

```
Safe Bearing Pressure
                   It is assumed that soil layer of thickness 1.5m (1.5xB) below the footing takes part in settlement process.
                   Load is dispersed in soil as per 2v: 1h Principle
         For Sandy Soil Stratum (1):
                   N ava of the layer =
                                                                    25
                                                                                                                 1 kg/cm<sup>2</sup>
                   Assuming Structural Load applied (q)
                   Pressure Increment (p) at top-layer of sandy layer involved in settlement =
                                                                                                                        1.00 kg/cm2
                                                              2.44
                   Settlement (S_i1) = pB I (1 - \mu2) / E
                                                                                    ( Ref : Clause no - 9.2.3.2 , IS : 8009 (Part -1) - 1976 )
                   Where,
                    Influence factor (1) =
                                                              0.85
                   Poisson's Ratio (μ) =
                                                              0.30
                                                                                    (Ref:Table no-1.16.2, Foundation Design Manual, N. V. Nayak)
                   Modulus of Elasticity (E)
                                                           1200(N+6)
                                                                 37200 kpa
                                                                                           (Ref : Bowles, J.E., Foundation Analysis & Design, McGraw-
                                                                   372 kg/cm<sup>2</sup>
                                                                                                                Hill . New York.2002)
                   Settlement (S_{i1}) =
                                                          1.871370968 cm
         For Clayey Soil Stratum:
                   Initial Void Ratio at mid-height of layer (e<sub>0</sub>) =
                                                                       0.3(e<sub>0</sub> - 0.27)
                                                                                                       (Ref:Clause no-9.2,2,2 IS: 8009 (Part -1)-1976 )
                   Initial effective Pressure at mid-height of layer ( Po )
                                                                                                  1.90
                                                                                                           kg/cm<sup>2</sup>
                   Assuming Structural Load applied (q)
                                                                                                     1
                                                                                                           kg/cm<sup>2</sup>
                                                                                                 636172.5124
                   Area of the top layer where load applied in cm2
                   Area of the middle layer where load applied in cm2
                                                                                                 2761165.418
                   Pressure Increment (\Delta_p) in kg/cm<sup>2</sup>
                                                                                                     0.2304
                   Thickness of soil layer involved ( H<sub>t</sub> )
                                                                               450 cm
                          Settlement (S_{oed}) =
                                                                                                       (Ref:Clause no-9.2.2.2 IS: 8009 (Part -1)-1976 )
                                                              1.07
                                                                        cm
         For Sandy Soil Stratum (2):
                                                               25
                   N ava of the laver =
                   Assuming Structural Load applied (q)
                                                                                                                    kg/cm
                   Area of the top layer of foundation
                                                                                                        636172.51 cm<sup>2</sup>
                                                                                                       3463605.9 cm<sup>2</sup>
                   Area of top layer of sandy strata
                   Foundation Pressure (p) =
                                                                                                          0.184
                                                                                                                     kg/cm<sup>2</sup>
                                                                                    ( Ref : Clause no - 9.2.3.2 , IS : 8009 (Part -1) - 1976 )
                   Settlement (S<sub>i</sub> 2) = pB I (1 - \mu2) / E
                   Where.
                    Influence factor (I) =
                                                              0.85
                                                                                    (Ref:Table no-1.16.2,Foundation Design Manual, N. V. Nayak)
                   Poisson's Ratio (μ) =
                                                              0.30
                   Modulus of Elasticity (E)
                                                           1200(N+6)
                                                                 37200 kp.
                                                                                             (Ref : Bowles, J.E., Foundation Analysis & Design, McGraw-
                                                                   372 kg/cm
                                                                                                                Hill, New York, 2002)
                   Settlement (S_{i2}) =
                                                          0.343721198 cm
Depth factor & λ:
                                 D/VLB
                                                                           1.03
                                  VLB / D
                                                                                             ( Ref : Fig no - 12 , IS : 8009 (Part -1) - 1976 )
                                                                           0.97
                                   L/B
                                                                           1.00
                               Depth Factor
                                                                           0.72
                                                                           0.70
                                                                                             ( Ref : Table no - 1, IS : 8009 (Part -1) - 1976 )
                              Rigidity Factor
                                                                           0.80
                   Settlement for 1kg / cm2
                                                                        ((Soed x A) + Si 1+ Si 2) x Depth Factor x Rigidity Factor
                                                                           1.71
              17.1 mm Settlement caused due to
                                                                           1.00
                                                                                    kg/cm<sup>2</sup>
                                                                                                                                 10.00
                                                                                                                                          t/m<sup>2</sup>
Hence,
                50 mm Settlement caused due to
                                                                           2.93
                                                                                                                                 29.32
                                                                                                                                         t/m^2
                75 mm Settlement caused due to
                                                                           4.40
                                                                                    kg / cm<sup>2</sup>
                                                                                                                                 43.97
                                                                                                                                          t/m^2
  (C) Allowable Bearing Pressure
          Safe Bearing Capacity ( \mathbf{q}_{\text{safe}} )
                                                                                                                                298.61 t/m2
         Safe Bearing Pressure for 50mm Settlement
                                                                                                                                          t/m^2
         Safe Bearing Pressure for 75mm Settlement
                                                                                                                                          t/m^2
                                                                                                                                 43.97
```

			WEL	L FOUNDA	ITIO	N			
			Refer - IS	code 6403, 8	3009(part-l)			
Location	:- Yamuna	River_BH-5(P6)							
Diam	eter of Well	(B)		=	=	9	00 cm	9	m
Dept	h of Well (d_f	1)		=	=	32	00 cm	32	m
Dept	h of scour fr	om ground level		=	=	2010	0.5 cm	20.105	m
Effec	tive depth o	f Well		=	5)	1189	.5 cm	11.895	m
Fou	nding Strati	um = Silty Clay							
D/I	3		z	1.321	66667	7			
She	ar Criteria	2							
			N	= N>	50				
			С	= 2.0	00	kg/ cr	n ²		
		(Ref:	Page no-30), Foundation [esign)	Manual, Naray	an V. Nayak)		
Satu	ated unit we	eight of foundation	soil (Y _{sat})) = 0.0	02	Kg/Cm ³			
Subn	nerged unit v	weight of foundatio	n soil (γ ')) = 0.0	01	Kg/Cm ³			
Bear	ng Capacity	Factor,							
		N _c	=	5.14	7		(Ref : Clause	no. 5.3.1.1 , IS : 64	03-1981)
Shap	e Factor,								
		S _c	=	1.30	7		(Ref : Clause	no. 5.1.2.1 , IS : 64	03-1981)
Dept	h Factor ,								
		d _c	=	1.26	7		(Ref : Clause	no. 5.1.2.1 , IS : 64	03-1981)
et Ultimate Bearing Capa	city (q _d)	= cNc	Sc dc	=		16.90	kg/cm ²	•	
							(Ref : Clause	no. 5.1.2.1 IS : 640	3-1981)
		Factor of S	afet ∳ FOS)	=		2.50			
	Net	Safe Bearing Capa	city(q _{safe})	=		q _d /FOS			
				=		6.759	kg/cm ²		
				=		67.59	t/m²		
ofo Desuine Dussess	2		000				•		
afe Bearing Pressur	2	1	900		\uparrow				
		3200		25.					
		350 ¹⁷⁵		355	10	Clayey Soil			
		175	,	,		_			
		110							
				30	0	Sandy Soil			
		150		1		-			
		* ₹		→		Clayey Soil			
		150			300				
		1			(S1 S7			
					400	Sandy Soil			
	14								


```
For Clayey Soil Stratum:
From lab test,
                       Initial Void Ratio at mid-height of layer ( e_0 )
                                                                                                     0.51
                       Compression Index ( C<sub>c</sub> )
                                                                                               0.3 ( e<sub>0</sub> - 0.27 )
Assumptions:
                                                                                                     0.07
                       Load is dispersed in soil as per 2v: 1h Principle
                       The zone of Soil within a depth of 1.5xdia of well is assumed to the involved in setlement
                                                                                                                      1.365
Initial effective Pressure at mid-height of layer ( Po ) in kg/cm2
Assuming Load applied (q) in kg/cm<sup>2</sup>
                                                                                                                         1
Area of the top layer where load applied in cm2
                                                                                                                  636172.5124
Area of the middle layer where load applied in cm2
                                                                                                                 907625.7526
Pressure Increment (\Delta_p) in kg/cm<sup>2</sup>
                                                                                                                      0.7009
                                                                231.79
                       Settlement (Soed1)
                                                                                      3.00
                                                                                               cm
For Sandy Soil Stratum :
       N avareage of the sandy soil layer =
                                                                   25
    • Load is dispersed in soil as per 2v: 1h Principle
    • The zone of Soil within a depth of 1.5xwidth of footing is considered for settlement
Assuming Load applied (q) =
                                                                               1
                                                                                    kg/cm<sup>2</sup>
Area of the top layer of foundation =
                                                                  636172.5124
                                                                   1227184.63 cm<sup>2</sup>
Area of top layer of sandy strata =
Foundation Pressure (p) =
                                                                           0.52
                                                                                   kg/cm<sup>2</sup>
Settlement (S_i) = pBI(1-\mu 2)/E
                                                                                               (Ref: Clause no - 9.2.3.2, IS: 8009 (Part -1) - 1976)
       Where, Influence factor (I) =
                                                                 0.85
                       Poisson's Ratio (\mu) =
                                                                                 (Ref:Table no-1.16.2,Foundation Design Manual, Narayan V. Nayak)
                                                                 0.30
                       Modulus of Elasticity( E ) =
                                                              1200(N+6)
                                                                                                                 (Ref : Bowles, J.E. 2002, Foundation Analysis &
                                                                 37200
                                                                                      kp<sub>a</sub>
                                                                                                                       Design, McGraw-Hill, New York with
                                                                                                                                   Permission)
                                                                  372
                                                                                    kg/cm<sup>2</sup>
Settlement (S_i1) =
                                                0.9701 cm
For Clayey Soil Stratum:
Initial effective Pressure at mid-height of layer (Po) in kg/cm2
                                                                                                     1.99
Assuming Load applied (q) in kg/cm2
                                                                                                 636172.5124
Area of the top layer where load applied in cm2
Area of the middle layer where load applied in cm<sup>2</sup>
                                                                                                 2269800.692
Pressure Increment (\Delta_n) in kg/cm<sup>2</sup>
                                                                                                     0.28
                                                                198.68
                                                                 0.057
                       Settlement (Soed2)
                                                                                    1 + e_0
                                                                                         0.82 cm
```

```
For Sandy Soil Stratum ;
       N avareage of the sandy soil layer =
                                                                    25
 Assumptions .
     • Load is dispersed in soil as per 2v: 1h Principle
     • The zone of Soil within a depth of 1.5xwidth of footing is considered for settlement
                                                                                      kg/cm<sup>2</sup>
 Assuming Load applied (q) =
                                                              636172.5124
 Area of the top layer of foundation =
                                                              2688025.214
                                                                                  cm<sup>2</sup>
 Area of top layer of sandy strata =
                                                                   0.24
                                                                                      kg/cm<sup>2</sup>
 Foundation Pressure (p) =
 Settlement (S_i) = pBI(1-\mu 2)/E
                                                                                                 (Ref: Clause no - 9.2.3.2, IS: 8009 (Part -1) - 1976)
                                                                   0.85
       Where, Influence factor (1) =
                        Poisson's Ratio (\mu) =
                                                                   0.30
                                                                                  (Ref:Table no-1.16.2,Foundation Design Manual, Narayan V. Nayak)
                        Modulus of Elasticity(E) =
                                                                1200(N+6)
                                                                                                                   (Ref: Bowles, J.E. 2002, Foundation Analysis &
                                                                                                                         Design, McGraw-Hill, New York with
                                                                                        kp_a
                                                                  37200
                                                                                                                                     Permission)
                                                                   372
                                                                                      kg/cm<sup>2</sup>
Settlement (S_i2) =
                                                 0,4429 cm
                                   D/VLB
                                                                                      1.32
                                    VLB / D
                                                                                       0.76
                                                                                                                  ( Ref : Fig no - 12 , IS : 8009 (Part -1) - 1976 )
                                     L/B
                                                                                       1.00
                                 Depth Factor
                                                                                      0.668 -
                                Rigitidity Factor
                                                                                       0.80
                                       λ
                                                                                       0.70
                        ((S_{oed}1+S_{oed}2)\lambda+S_{i1}+Si_2)
                                                                                       4.09
                        Settlement for 1kg / cm<sup>2</sup>
                                                                                  ((Soed1+Soed2)λ+ Si ) x Depth Factor x Rigidity Factor
                  21.9 mm Settlement at
                                                                                           1.00 kg / cm2
                                                                                                                                               10.00 t/m2
                     1 mm Settlement at
                                                                                           0.05 \text{ kg}/\text{cm}^2
                                                                                                                                                0.46 t/m^2
                    50 mm Settlement at
                                                                                           2.29 kg / cm<sup>2</sup>
                                                                                                                                               22.88 t/m<sup>2</sup>
                    75 mm Settlement at
                                                                                                                                               34.32 t/m<sup>2</sup>
                                                                                           3.43 kg / cm<sup>2</sup>
Net Safe Bearing Capacity ( q<sub>safe</sub> )
                                                                                         67.586 t/m<sup>2</sup>
                                                                                         22.880 t/m<sup>2</sup>
     Safe Bearing Pressure for 50mm settlement
     Safe Bearing Pressure for 75mm settlement
                                                                                         34.319 t/m<sup>2</sup>
```


Bridge at Km (10+786)

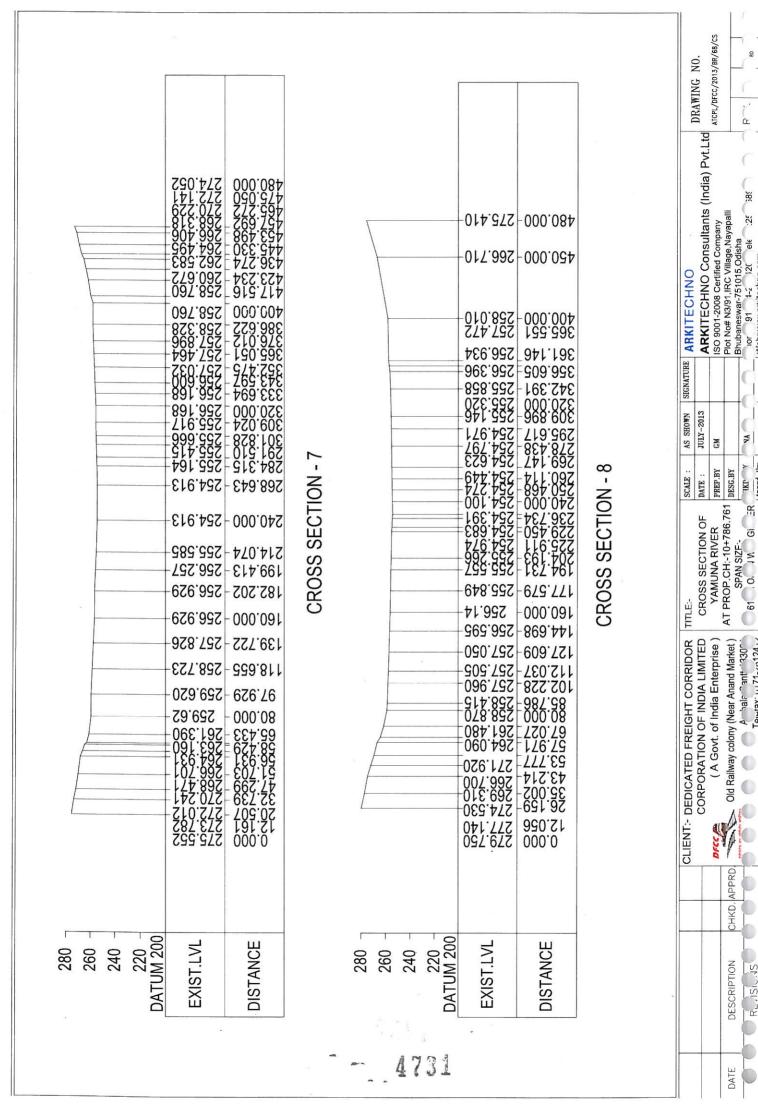
- ① Borelocation Plan
- ② River cross-section 1 km both in U/S and D/S side.
- 3 Catchment area marking in Toposheet
- Discharge Calculations
- Silt factor Calculations

BOREHOLE LOCATION PLAN

YAMUNA RIVER PROFILE AT-PROP:-10+786 SPAN SIZE :- 7 X 61.0M on 1 KM SURVEY BOTH IN U/S & D/S

CROSS SECTION - 2

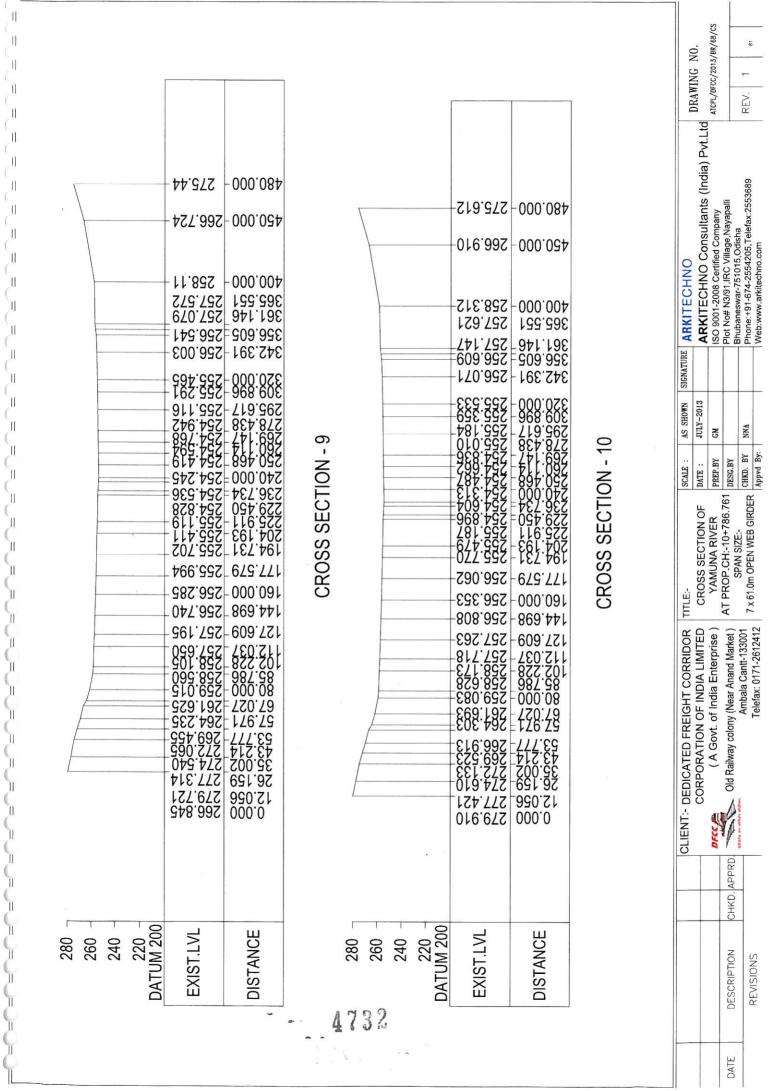
27	NO.	3/BR/			7	_
DIVIDITY OF	DRAWING INU.	ATCPL/DFCC/2013/BR/		0.72	REV. 1	
SCALE: AS SHOWN SIGNATURE ARKITECHNO	ARKITECHNO Consultants (India) Pvt.Ltd		Plot No# N3/91,IRC Village, Navapalli	Bhubaneswar-751015.Odisha	ax:2553689	Web:www.arkitechno.com
AS SHOWN	JULY-2013	GM			NNA	
SCALE:	DATE:	PREP.BY	חבכי מי	DESC.D1	CHKD. BY	Appvd By:
TITLE:	CROSS SECTION OF	YAMUNA RIVER	AT PROP.CH:-10+786.761	SPAN SIZE:	7 x 61.0r	_
CLIENT:- DEDICATED FREIGHT CORRIDOR TITLE:-	CORPORATION OF INDIA LIMITED	(A Govt. of India Enterprise)	Old Bailway colony (Near Apand Market	The second of th	Ambala Cantt-133001	l eletax: 01/1-2612412
			0000	D. ALLAND		
			MOITGIGGGGG	DESCRIPTION	DEVICIONS	NEVISION S

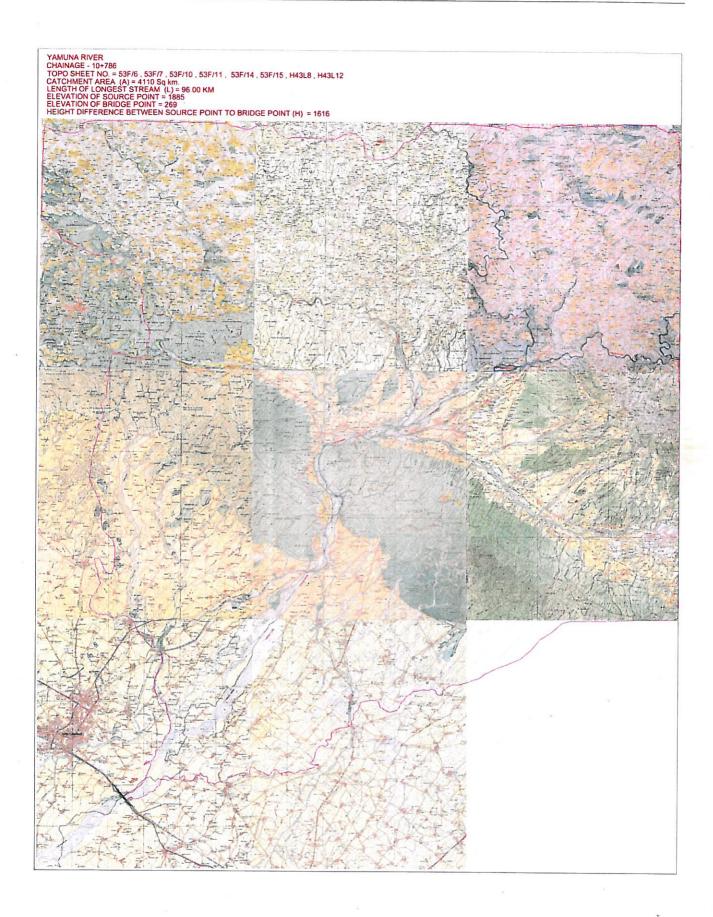

DATE

	- 277.396 - 277.500	-000.084 -224.164			- 395.372 - 314.772 - 314.772	-211.134 -730.284 -857.864 -816.486 -216.486
	-021.132	-000.004			- 803,892 - 803,792	- 152.235 - 000.004 - 376.724 - 376.724
	728.434	320.000- 335.259- 350.000-	m		265.693 255.693 256.472	-080.948 -050.348 -010.338
	-561.95-	-000.0 1 2	CROSS SECTION - 3		262.645 262.645 263.401	
	262.626- 249.195- 249.195-	-346.751 -000.091 -762.071	CROSS		-p16.452	- 872.081 - 273.081 - 287.802
	253.568- 254.510 254.510 257.308- 254.504- 274.504- 274.504- 274.504- 274.504- 274.504- 278.303- 278.303- 278.303- 278.303- 278.303-	118.020- 118.020- 104.460- 27.958- 27.958- 27.958- 27.958- 118.000- 11.779- 27.958- 27			200.772 200.440 200.440 200.440 200.440 200.440 200.440 200.440 200.440 200.440 200.440 200.440 200.440 200.440	- 868.251 - 987.11 - 986.05 - 860.89 - 860.80 -
280 260 – 240 – 220 – DATUM 200	_278.302	DISTANCE 0.00		280 - 260 - 240 - 220 - DATUM 200	CUE 22C	DISTANCE
ِ <u>م</u> ا			* *	4723	,	

CROSS SECTION - 4

OIN DINIMITATE	ARKITECHNO Consultants (India) Pvt.Ltd	ATCPL/DFCC/2013/BR/68/CS			-
SCALE : AS SHOWN SIGNATURE ARKITECHNO	on 91 t-2 .2c ele .25 .8c				
SIGNATURE					
AS SHOWN	JULY-2013	GM		(A)	 -
SCALE :	DATE:	PREP.BY	DESG.BY	, OXI	Appvd By:
TITLE:	Ω.	YAMUNA RIVER	AT PROP.CH:-10+786.761 DESC.BY	SPAN SIZE-	
CLIENT:- DEDICATED FREIGHT CORRIDOR	CORPORATION OF INDIA LIMITED	-	_	A ale int 300	Telefax: 0171-2612412
딩		DF	APPRD.)
				000)
			DESCRIPTION		RE-ISICAS


	2 29 4 49 508 3950 17 288 2 17 288 3 17 28 3 17 28 3 17 28 3 18 2 18 3 18 2 18 3 18 2 18 3 18 2 18 3 18 2 18 3 18 2 18 3 18 2 18 3 18 2 18 3 18 3	255 255 255 255 255 255 255 255	CROSS SECTION - 5		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00 4 50 50 50 50 50 50 50 50 50 50 50 50 50	CROSS SECTION - 6	CLIENT:- DEDICATED FREIGHT CORRIDOR TITLE: CORPORATION OF INDIA LIMITED CARDOR (A Govt. of India Enterprise) YAMUNA RIVER AT PROP.CH:-10+786.761 TITLE: SCALE: AS SHOWN SIGNATURE ARRITECHNO BARKITECHNO ARKITECHNO ARKITECHNO ARKITECHNO BRAWING NO. ARKITECHNO ARKITECHNO ARKITECHNO ARKITECHNO BRAWING NO. ARCHIOCOROLISA Company AT PROP.CH:-10+786.761 INDIA RAIL INDIA ALIA Market) AT PROP.CH:-10+786.761 INDIA RAIL INDIA ALIA Market) AT PROP.CH:-10+786.761 INDIA RAIL MARKET MA	Ambala Canti-133001 Ambala Canti-13301 7 x 61.0m OPEN WEB GIRDER Apped By:
280 260 240 220 DATUM 200	EXIST.LVL	DISTANCE		280 260 – 240 – 220 – DATUM 200	EXIST.LVL	DISTANCE		NO ECO PIETO NO MANAGEMENT NO	
				4730				DATE	


Web:www.arkitechno.com

Appvd By:

Telefax: 0171-2012412

CATCHMENT AREA MARKING IN TOPOSHEET

DISCHARGE CALCULATIONS

TE

(

1.0 Discharge Calculations as per Empirical Formula (Dickens):

Details of the Bridge:

Preparation of Catchment Area Plan:

A catchment plan showing the river/stream, contours and spot levels was prepared for determining the physiographic parameters as follow:

Physiographic Parameters:

Discharge Calculations:

Where

$$M = 4110.0 \text{ Sq.km}$$

$$\therefore$$
 Q = 14 x 4110.0 $^{3/4}$ = 7186.367 cu.m/sec

2.0 Discharge Calculations as per Rational Formula:

=
$$lo\left(\frac{2}{tc+1}\right)$$
 $lo = one hour rainfall$

Where lo =
$$\frac{F}{2}$$
 $\left(\begin{array}{c} 1 + \frac{1}{T} \\ \end{array}\right)$ = 7.30 cm/hr

tc = Concentration time of Catchment in hours

=
$$0.870 \left(\frac{L^3}{H}\right)^{0.385}$$
 = 9.858 hrs

From Topo Sheet

Discharge Calculations - SUH :-

Discharge calculation by Synthetic Unitgraph Method

1 Design data

Catchment Area (A) = 4110 sqkm Length of Longest Stream (L) = 96 km Length of Longest Stream from cg to site (L_c) = 48 km Unit Duration of Unitgraph (‡) = 1.0 hr

2 Computation of Equivalent Stream Slope (S)

SI. No.	Reduced distance	Reduced levels	Li	Di	D _{i-1} +	$D_i \qquad L_i(D_{i-1} + D_i)$
	(kms)	(m)	(kms)	(m)	(m)) (mxkm)
1	2	3	4	5	6	7
1	0.000	262.012	0		-	-
2	0.110	262.001	0.110	-0.011	-	0.00
3	0.230	261.976	0.120	-0.036	-0.04	-0.01
4	0.330	261.945	0.100	-0.067	-0.10	0.01
5	0.390	261.924	0.060	-0.088	-0.15	55 -0.01
6	0.510	261.913	0.120	-0.099	-0.18	-0.02
7	0.580	262.056	0.070	0.044	-0.05	55 0.00
8	0.710	262.032	0.130	0.02	0.06	4 0.01
9	0.830	261.911	0.120	-0.101	-0.08	-0.01
10	0.950	261.888	0.120	-0.124	-0.22	25 -0.03
11	1.100	261.776	0.150	-0.236	-0.3	6 -0.05
12	1.240	261.728	0.140	-0.284	-0.5	2 -0.07
13	1.350	261.709	0.110	-0.3035	-0.58	75 -0.06
14	1.450	261.664	0.100	-0.3485	-0.65	52 -0.07
15	1.520	261.520	0.070	-0.4925	-0.84	-0.06
			1.520			-0.3954

Slope (S) = Σ Li(D_{i-1}+D_i) = **0.1712** m/km L^2

4737

3 Determination of Synthetic Unitgraph Parameters:-

Time fromcenter of unit rain fall to Unit hydrograph in hr. tp = $0.433[L/sqrt(s)]^{0.704}$ 77.38 hr Peak discharge of unit hydrograph in cumecs / Sq. Km $q_p = 1.161 \text{ x (tp)}^{-0.635}$ = 0.073 cumecs / Sq. Km = $2.284(q_p)^{-1.0}$ W₅₀ Width of unit hydrograph at 50% of Max discharge ordinate 31.13 hr $W_{75} = 1.331(q_p)^{-0.991}$ Width of unit hydrograph at 75% of Max discharge ordinate 17.72 hr $0.827 \times (qp)^{1.023}$ Width of rising side of unit hydrograph at 50% of Max discharge ordinate = $W_{R50} =$ 11.97 hr Width of rising side of unit hydrograph at 75% of Max discharge ordinate = 0.561 x (qp) 1.037 $W_{R50} =$ 8.421 hr $= 8.375 \text{ x (tp)}^{0.512}$ Base width of Unit hydrograph = 77.62 hr Time from the start of rise to the peak of unit hydrograph T_{M} $t_p + t_r / 2$ 77.88 hr Peak discharge of unit hydrograph Qp $q_p X A$ 301.6 cumecs

4.733

Slope of River bed calculations :-

Bed Slope / Longitudinal Slope of River Bed :

S. No.	length	LBL
1	0	262.012
2	110	262.001
3	230	261.976
4	330	261.945
5	390	261.924
6	510	261.913
7	580	262.056
8	710	262.032
9	830	261.911
10	950	261.888
11	1100	261.776
12	1240	261.728
13	1350	261.709
14	1450	261.664
15	1520	261.52

ige 1

Bed slope =

-0.00027 - ve sign indicate Down Ward Slope

BED SLOPE

Chainage in m

Discharge Calculations as per Area-velocity Method: At Upstream Site(500 m from Bridge center) A Where A = Cross Sectional Area ٧ = Velocity, calculated from Manning's formula $1 \times R^{2/3} \times S^{1/2}$ = R = Hydraulic Mean depth A/P P = Wetted Perimeter S Bed Slope, measured over a long reach n Coefficient of rugosity (from code) Chainage 10+786 H.F.L = 271.445 mL.B.L 254.095 m

Bed slope S = 0.00027 Spread length 480.000 m

Rugosity coefficient, 0.055 n=

S.No.	H.F.L	offset (M)	Bed Level	D.O.F	A.D.O.F	Distance	Area	W.P
1	2	3	4	5	6	7	8	9
							(6 x 7)	sqrt{7*7+ (h1- h2)^2}
1	271.445	0.00	279.75	0.000	0.000	0.000	0.000	0.000
2	271.445	80.00	258.87	12.575	6.287	80.000	503.000	80.982
3	271.445	160.00	256.14	15.301	13.938	80.000	1115.027	80.046
4	271.445	240.00	254.10	17.350	16.325	80.000	1306.027	80.026
5	271.445	320.00	255.32	16.122	16.736	80.000	1338.880	80.009
6	271.445	400.00	258.01	13.435	14.778	80.000	1182.267	80.045
7	271.445	480.00	275.41	0.000	6.717	80.000	537.387	81.120

AVG. B.L = 262.515

> Total (Cross sectional Area, A) = 5982.587 sq. m Wetted Perimeter, P in m = 482.230

Hydraulic Radius, R = A / P = 12,406 m

1/n * R^{2/3}. S^{1/2} Velocity, V = 1.601 m/sec **Abbreviations**

H.F.L. -

High Flood Level Discharge, Q = 9578.516 cumecs D.O.F. -Depth Of Flow Say 9579.00 cumecs A.D.O.F. -Average Depth Of Flow

W.P. Wetted Perimeter Linear water way 480.000 m L.B.L. Lowest Bed Level

285.00 280.00 HFL V 275.00 270.00 **3ed Level** 265.00 260.00 255.00 250.00 245.00 240.00 0.00 80.00 160.00 240.00 320.00 400.00 480.00 Bed levels 279.75 258.87 256.14 254.10 255.32 258.01 275.41 H.F.L. 271.445 271.445 271.445 271.445 271.445 271.445 271.445 Chainage in m

Discharge Calculations as per Area-velocity Method :-At Upstream Site(100 m from Bridge center) Where Α = Cross Sectional Area = Velocity, calculated from Manning's formula 1 x R 2/3 x S 1/2 R = Hydraulic Mean depth A/P P Wetted Perimeter S Bed Slope, measured over a long reach = n Coefficient of rugosity (from code) Chainage 10+786 H.F.L = 271.445 m L.B.L 254.913 m Bed slope S = 0.00027 Spread length 480.000 m Rugosity coefficient, 0.050 n =

S.No.	H.F.L	offset (M)	Bed Level	D.O.F	A.D.O.F	Distance	Area	W.P
1	2	3	4	5	6	7	8	9
							(6 x 7)	sqrt{7*7+ (h1- h2)^2}
1	271.445	0.00	275.552	0.000	0.000	0.000	0.000	0.000
2	271.445	80.00	259.620	11.825	5.912	80.000	473.000	80.869
3	271.445	160.00	256.929	14.516	13.171	80.000	1053.647	80.045
4	271.445	240.00	254.913	16.533	15.524	80.000	1241.947	80.025
5	271.445	320.00	256.168	15.278	15.905	80.000	1272,400	80.010
6	271.445	400.00	258.760	12.685	13.981	80.000	1118.487	80.042
7	271.445	480.00	274.052	0.000	6.342	80.000	507.387	80.999

AVG. B.L = 262.285

Total (Cross sectional Area, A) = 5666.867 sq. m

Wetted Perimeter, P in m =

481.991

Hydraulic Radius, R = A / P =

11.757 m

1/n * R^{2/3}, S^{1/2} Velocity, V =

1.699 m/sec

Abbreviations

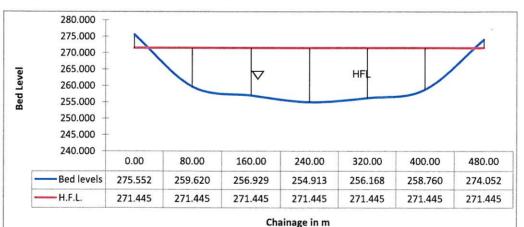
Discharge, Q = A*V = 9629.214 cumecs

H.F.L. -High Flood Level

9630.00 cumecs

D.O.F. -Depth Of Flow

Say


A.D.O.F. -Average Depth Of Flow

Wetted Perimeter

Linear water way

480.000 m

W.P. L.B.L. Lowest Bed Level

Discharge Calculations as per Area-velocity Method:-At Bridge Site Α X Where Α = Cross Sectional Area ٧ = Velocity, calculated from Manning's formula 1 x R 2/3 x S 1/2 = R = Hydraulic Mean depth A/P P Wetted Perimeter = S Bed Slope, measured over a long reach n Coefficient of rugosity (from code) Chainage 10+786 : H.F.L = 271.445 m L.B.L 254.820 m Bed slope S = 0.00027 Spread length 480.000 m

Rugosity coefficient, n = 0.050

S.No.	H.F.L	offset (M)	Bed Level	D.O.F	A.D.O.F	Distance	Area	W.P
1	2	3	4	5	6	7	8	9
							(6 x 7)	sqrt{7*7+ (h1- h2)^2}
1	271.445	0.00	276.412	0.000	0.000	0.000	0.000	0.000
2	271.445	80.00	259.310	12.135	6.068	80.000	485.400	80.915
3	271.445	160.00	256.759	14.686	13.410	80.000	1072.827	80.041
4	271.445	240.00	254.820	16.625	15.655	80.000	1252.427	80.024
5	271.445	320.00	256.138	15.307	15.966	80.000	1277.280	80.011
6	271.445	400.00	258.460	12.985	14.146	80.000	1131.667	80.034
7	271.445	480.00	275.415	0.000	6.492	80.000	519.387	81.047

AVG. B.L = 262.474

Total (Cross sectional Area, A) = 5738.987 sq. m Wetted Perimeter, P in m = 482.071

Abbreviations

Hydraulic Radius, R = A / P = =

11.905 m

Velocity, V = $1/n * R^{2/3}$. $S^{1/2}$

-

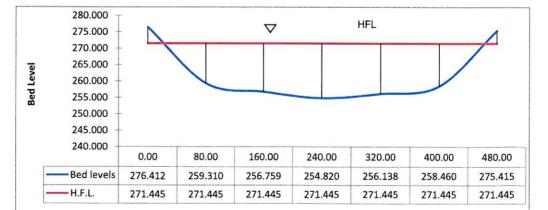
1.713 m/sec

Discharge, Q = A*V =

Linear water way

9833.242 cumecs

H.F.L. - High Flood Level D.O.F. - Depth Of Flow


Say 9834.00 cumo

=

D.O.F. - Depth Of Flow
A.D.O.F. - Average Depth Of Flow

9834.00 cumecs 480.000 m

W.P. - Wetted Perimeter
L.B.L. - Lowest Bed Level

Chainage in m

Discharge Calculations as per Area-velocity Method: At Down stream Site X (100 m from Bridge center) Where Cross Sectional Area Α = Velocity, calculated from Manning's formula 1 x R ^{2/3} x S ^{1/2} V = = R = Hydraulic Mean depth A/P P Wetted Perimeter = S Bed Slope, measured over a long reach n Coefficient of rugosity (from code) Chainage 10+786 H.F.L = 271.445 mL.B.L 252.645 m 0.00027 Bed slope S = Spread length 480.000 m Rugosity coefficient, n = 0.050

S.No.	H.F.L	offset (M)	Bed Level	D.O.F	A.D.O.F	Distance	Area	W.P
1	2	3	4	5	6	7	8	9
							(6 x 7)	sqrt{7*7+ (h1- h2)^2}
1	271.445	0.00	277.302	0.000	0.000	0.000	0.000	0.000
2	271.445	80.00	257.630	13.815	6.908	80.000	552.600	81.184
3	271.445	160.00	254.914	16.531	15.173	80.000	1213.827	80.046
4	271.445	240.00	252.645	18.800	17.665	80.000	1413.227	80.032
5	271.445	320.00	255.693	15.752	17.276	80.000	1382.080	80.058
6	271.445	400.00	258.810	12.635	14.193	80.000	1135.467	80.061
7	271.445	480.00	276.395	0.000	6.317	80.000	505.387	80.992

AVG. B.L = 261.913

> Total (Cross sectional Area, A) = 6202.587 sq. m Wetted Perimeter, P in m = 482.373

Hydraulic Radius, R = A / P =

12.858 m

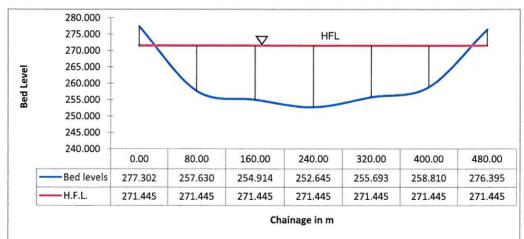
1/n * R^{2/3}, S^{1/2} Velocity, V =

1.804 m/sec

Abbreviations

Discharge, Q = A*V = 11187.803 cumecs

High Flood Level H.F.L. -D.O.F. Depth Of Flow


Say 11188.00 cumecs

A.D.O.F. -Average Depth Of Flow

W.P. Wetted Perimeter

480.000 m Linear water way

L.B.L. Lowest Bed Level

Discharge Calculations as per Area-velocity Method :-At Down stream Site X (500 m from Bridge center) A V Where = Cross Sectional Area = Velocity, calculated from Manning's formula 1 x R 2/3 x S 1/2 R = Hydraulic Mean depth A/P P = Wetted Perimeter S Bed Slope, measured over a long reach = n Coefficient of rugosity (from code) Chainage 10+786 : H.F.L = 271.445 m L.B.L 249.195 m Bed slope S = 0.00027 Spread length 480.000 m Rugosity coefficient, 0.050 n =

S.No.	H.F.L	offset (M)	Bed Level	D.O.F	A.D.O.F	Distance	Area	W.P
1	2	3	4	5	6	7	8	9
							(6 x 7)	sqrt{7*7+ (h1- h2)^2}
1	271.445	0.00	278.302	0.000	0.000	0.000	0.000	0.000
2	271.445	80.00	254.510	16.935	8.468	80.000	677.400	81.773
3	271.445	160.00	251.684	19.761	18.348	80.000	1467.827	80.050
4	271.445	240.00	249.195	22.250	21.005	80.000	1680.427	80.039
5	271.445	320.00	253.063	18.382	20.316	80.000	1625.280	80.093
6	271.445	400.00	261.120	10.325	14.353	80.000	1148.267	80.405
7	271.445	480.00	277.395	0.000	5.162	80.000	412.987	80.663

AVG. B.L = 260.753

Total (Cross sectional Area, A) = 7012.187 sq. m Wetted Perimeter, P in m = 483.023

Abbreviations

14.517 m

1.956 m/sec

Hydraulic Radius, R = A / P =

.

Discharge, Q = A*V =

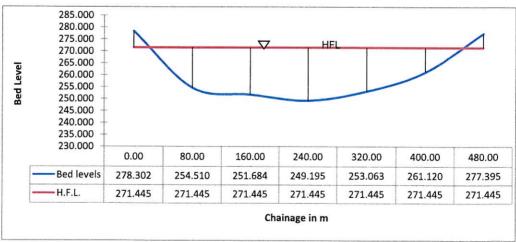
Velocity, V =

1/n * R^{2/3}. S^{1/2}

13713.734 cumecs

H.F.L. - High Flood Level
D.O.F. - Depth Of Flow

A.D.O.F. - Average Depth Of Flow


W.P. - Wetted Perimeter
L.B.L. - Lowest Bed Level

Linear water way

480.000 m

Say 13714.00 cumecs

m L.B.L. -

Design Discharge :-

Design discharge :

Formula	Discharge from catchment	Units
Emperical formula	7186.37	Cumecs
Rational Formula	5756.29	Cumecs
A-V method (at SOC)	13714.00	Cumecs

Max. discharge

=

13714.00 Cumecs

Second Highest

7186.37 Cumecs

As per Cl.6.2 of IRC SP:13,

1.5 x 7186.37

10779.55 Cumecs

Hence Design discharge

=

10779.55 Cumecs

Design discharge for foundation design:

As per Indian Rail Standard Code

Catchment area		Increase over design		
(in km ²)		discharge in perce		
0 -	500	30 %		
500 -	5000	30 -	20	
5000 -	25000	20 -	10	
>25000		10	%	

Design discharge for foundation

1.2

10779.55

12936.00 Cumecs

Linear water way & Afflux :-

1 Linear Water Way:

Design discharge	=	13714.00 m ³ /s	(As calculated)
Velocity of river	=	1.96 m/s	,
HFL	=	271.445 m	
Bed level	=	254.820 m	
Depth of water	=	16.63 m	
Assumed Afflux	=	0.05 m	
Velocity of approach	=	1.954 m/s	
Head due to velocity of approach (V2 / 2g)	=	0.195 m	
Total head	=	0.246 m	
Velocity through vent (2gh)	=	2.20 m/s	
Velocity allowable	=	2.20 m/s	
Linear water way required	=	375.78 m	
Proposed vent way 07 x 61	=	427.00 m	O.K

2 Check for Afflux

As per Cl. 2.2.7 of Pocket Book for Bridge Engineers published by Indian Road Congress, New Delhi

By Molesworth formula

3 Design of Formation Level

Vertical clearance (V_c) required = 0.90 m Bottom of deck level to be provided = 272.396 m

4 Scour Depth Calculations :

1

$$d_{sm} = 1.34 (D_b^2 / K_{sf})^{1/3}$$
 As per cl.703.2 of IRC 78 - 2000

where, D_b = the discharge in cumecs per metre width. K_{sf} = silt factor

$$D_b = 12936.0 = 30.30$$
 cumecs/m 427.0

$$d_{sm} = 1.34 \times (30.295^2 / 0.71)^(1/3) =$$
 14.597 m below HFL

Max. depth of scour for Piers =
$$2 \times d_{sm}$$
 = 29.19 m below HFL

Max. depth of scour for Abutment =
$$1.27 \times d_{sm} = 18.54 \text{ m below HFL}$$

(

SILT FACTOR CALCULATION

YAMUNA RIVER					
Bore Hole No	Depth (m)	Sub-Starta	Silt Factor		
BH-1(A2)	1.5	Fine Sand	2.26		
BH-2(P4)	1.5	Fine Sand	2.15		
BH-3(P5)	1.5	Fine Sand	2.24		
BH-4(A1)	1.5	Fine Sand	2.28		
BH-5(P6)	1.5	Fine Sand	2.19		
BH-6(P3)	1.5	Fine Sand	2.19		
BH-7(P2)	1.5	Fine Sand	2.22		
BH-8(P1)	1.5	Silty Sand	2.22		

4.57

(

Appendix -III

(Laboratory Test Results)

ARKI TECHNO
CONSULTANTS (INDIA) PVT.LTD.

ARKITECHNO

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL WITH SILT FACTOR (AS PER IS 2720, P-4 & IRC 5)

Client:

DFCC

Project Name

G.I For 3nos Important Bridges

Type of Sample

Date of Testing: 24.10.12

T. K. Das

Location

Depth

BH-1(Yamuna River-Ambala) 1.5m

Sampled by : Tested by :

K.C Sahoo

Weight of oven dried sample before washing (gm) :-

100

Weight of oven dried sample after washing (gm) :-

83.28

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %	Average size of Particle in mm	Column 3 X Column 6
1	2	3	4	5	6	7
4.75	0.00	0.00	0.00	100.00	2.38	0.00
2.00	36.37	36.37	36.37	63.63	3.38	122.75
0.425	31.76	31.76	68.13	31.87	1.21	38.51
0.075	14.430	14.43	82.56	17.44	0.25	3.61
Pan	0.72	17.44	100.00	0.00	0.0375	0.65
Wash Loss	16.720					
Total	100					

Gravel Content (%)=

0.00

Sand Content (%)

82.56

Silt and clay %

17.44

Weighted mean dia of Particle (d_{sm}) =

1.66

Silt Factor 1.76 X sqrt (d_{sm}) =

2.26

Remarks :-

Lab Manager

Checked By

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date of Testing : 24.10.12

Location : BH-1(Yamuna River-Ambala) Sampled by : T. K. Das

Depth : 1.5m Tested by : K.C.Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

82.57

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	0.00	0.00	0.00	100.00
2.00	36.37	36.37	36.37	63.63
0.425	31.76	31.76	68.13	31.87
0.075	14.44	14.44	82.57	17.43
Total	100.00			

Gravel Content (%)= 0.00

Sand Content (%) = 82.57 Silt and clay % 17.43

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date of Testing : 24.10.12

Location : BH-1(Yamuna River-Ambala) Sampled by : T. K. Das

Depth : 3.0m Tested by : K.C. Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

91.03

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	0.00	0.00	0.00	100.00
2.00	40.93	40.93	40.93	59.07
0.425	34.68	34.68	75.61	24.39
0.075	15.42	15.42	91.03	8.97
Total	100.00			

Gravel Content (%)= 0.00

Sand Content (%) = 91.03 Silt and clay % 8.97

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date of Testing : 24.10.12

Location : BH-1(Yamuna River-Ambala) Sampled by : T. K. Das

Depth : 4.5m Tested by : K.C.Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

89.24

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	0.00	0.00	0.00	100.00
2.00	39.10	39.10	39.10	60.90
0.425	34.36	34.36	73.46	26.54
0.075	15.79	15.79	89.25	10.75
Total	100.00			

Gravel Content (%)= 0.00

Sand Content (%) = 89.25 Silt and clay % 10.75

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date of Testing : 24.10.12

Location : BH-1(Yamuna River-Ambala) Sampled by : T. K. Das

Depth : 6.0m Tested by : K.C.Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

85.38

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	0.00	0.00	0.00	100.00
2.00	38.82	38.82	38.82	61.18
0.425	33.94	33.94	72.76	27.24
0.075	12.63	12.63	85.39	14.61
Total	100.00			

Gravel Content (%)= 0.00

Sand Content (%) = 85.39 Silt and clay % 14.61

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client

: DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

SPT

Date of Testing

24.10.12

Location

BH-1(Yamuna River-Ambala)

Sampled by

T. K. Das

Depth

: 10.5m

Tested by

K.C .Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

88.84

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	0.00	0.00	0.00	100.00
2.00	38.02	38.02	38.02	61.98
0.425	35.37	35.37	73.39	26.61
0.075	15.45	15.45	88.84	11.16
Total	100.00			

Gravel Content (%)=

0.00

Sand Content (%)=

88.84

Silt and clay %

11.16

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

SPT

Date of Testing

24.10.12

Location

BH-1(Yamuna River-Ambala)

Sampled by

T. K. Das

Depth

: 13.5m

Tested by

K.C .Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

86.53

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	9.19	9.19	9.19	90.81
2.00	34.85	34.85	44.04	55.96
0.425	30.13	30.13	74.17	25.83
0.075	12.36	12.36	86.53	13.47
Total	100.00			

Gravel Content (%)=

9.19

Sand Content (%) =

77.34

Silt and clay %

13.47

Remarks :-

4700

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date of Testing : 24.10.12

Location : BH-1(Yamuna River-Ambala) Sampled by : T. K. Das

Depth : 16.5m Tested by : K.C. Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

87.56

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	8.94	8.94	8.94	91.06
2.00	34.33	34.33	43.27	56.73
0.425	30.97	30.97	74.24	25.76
0.075	13.32	13.32	87.56	12.44
Total	100.00			

Gravel Content (%)= 8.94

Sand Content (%) = 78.62 Silt and clay % 12.44

Remarks :-

4757

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date of Testing : 24.10.12

Location : BH-1(Yamuna River-Ambala) Sampled by : T. K. Das

Depth : 18.0m Tested by : K.C. Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

86.18

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	0.00	0.00	0.00	100.00
2.00	37.24	37.24	37.24	62.76
0.425	33.58	33.58	70.82	29.18
0.075	15.37	15.37	86.19	13.81
Total	100.00			

Gravel Content (%)= 0.00

Sand Content (%) = 86.19 Silt and clay % 13.81

Remarks :-

4733

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client

: DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

SPT

Date of Testing

24.10.12

Location

BH-1(Yamuna River-Ambala)

Sampled by

T. K. Das

Depth

: 21.0m

Tested by

K.C.Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

87.06

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	0.00	0.00	0.00	100.00
2.00	37.94	37.94	37.94	62.06
0.425	34.88	34.88	72.82	27.18
0.075	14.24	14.24	87.06	12.94
Total	100.00			

Gravel Content (%)=

0.00

Sand Content (%) =

87.06

Silt and clay %

12.94

0

Remarks :-

4759

Arki Techno Consultants (India) Pvt. Ltd N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

SPT

Date of Testing

24.10.12

Location

: BH-1(Yamuna River-Ambala)

Sampled by

T. K. Das

Depth

: 22.5m

Tested by

K.C .Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

86.70

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	9.87	9.87	9.87	90.13
2.00	34.15	34.15	44.02	55.98
0.425	30.71	30.71	74.73	25.27
0.075	11.97	11.97	86.70	13.30
Total	100.00			

Gravel Content (%)=

9.87

Sand Content (%) =

76.83

Silt and clay %

13.30

Remarks :-

GA 4760

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

SPT

Date of Testing

24.10.12

Location

: BH-1(Yamuna River-Ambala)

Sampled by

T. K. Das

Depth

: 27.0m

Tested by

K.C .Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

87.19

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	10.65	10.65	10.65	89.35
2.00	33.97	33.97	44.62	55.38
0.425	30.51	30.51	75.13	24.87
0.075	12.06	12.06	87.19	12.81
Total	100.00			

Gravel Content (%)=

10.65

Sand Content (%) =

76.54

Silt and clay %

12.81

Remarks :-

- 4701

Arki Techno Consultants (India) Pvt. Ltd N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

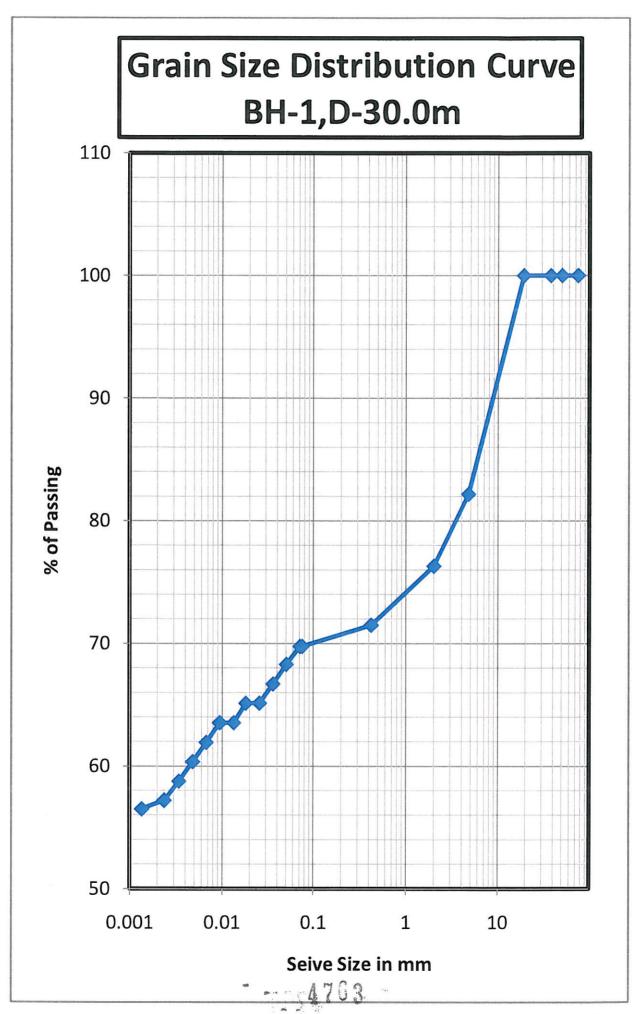
Type of Sample : SPT Date of Testing : 24.10.12

Location : BH-1(Yamuna River-Ambala) Sampled by : T. K. Das

Depth : 30.0m Tested by : K.C.Sahoo

Weight of oven dried sample before washing (gm) :-

100.00


Weight of oven dried sample after washing (gm) :-

30.25

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	17.82	17.82	17.82	82.18
2.00	5.87	5.87	23.69	76.31
0.425	4.81	4.81	28.50	71.50
0.075	1.75	1.75	30.25	69.75
Total	100.00			

Gravel Content (%)= 17.82

Sand Content (%) = 12.43 Silt and clay % 69.75

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

SPT

Date of Testing

24.10.12

Location

: BH-1(Yamuna River-Ambala)

Sampled by

T. K. Das

Depth

: 36.0m

Tested by

K.C .Sahoo

Weight of oven dried sample before washing (gm) :-

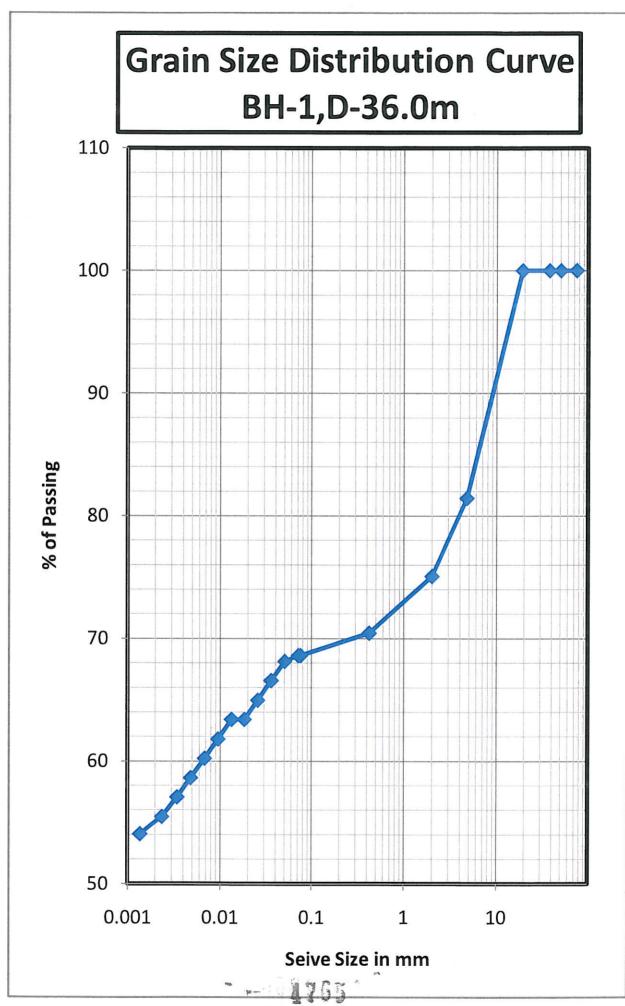
100.00

Weight of oven dried sample after washing (gm) :-

31.38

	· · · · · · · · · · · · · · · · · · ·			
Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	18.57	18.57	18.57	81.43
2.00	6.36	6.36	24.93	75.07
0.425	4.63	4.63	29.56	70.44
0.075	1.82	1.82	31.38	68.62
Total	100.00			

Gravel Content (%)=


18.57

Sand Content (%) =

12.81

Silt and clay %

68.62

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date of Testing

Location : BH-1(Yamuna River-Ambala) Sampled by : T. K. Das

Depth : 37.5m Tested by : K.C.Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

1.64

24.10.12

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	0.56	0.56	0.56	99.44
2.00	0.59	0.59	1.15	98.85
0.425	0.34	0.34	1.49	98.51
0.075	0.15	0.15	1.64	98.36
Total	100.00			

Gravel Content (%)=

0.56

Sand Content (%) =

1.08

Silt and clay %

98.36

Remarks :-

- 14766-

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

SPT

Date of Testing

24.10.12

Location

: BH-1(Yamuna River-Ambala)

Sampled by

T. K. Das

Depth

: 39.0m

Tested by

K.C .Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

89.23

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt.	Cummulative Wt	Cummulative Wt
		Retained In %	Retained In %	Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	10.94	10.94	10.94	89.06
2.00	35.62	35.62	46.56	53.44
0.425	30.28	30.28	76.84	23.16
0.075	12.39	12.39	89.23	10.77
Total	100.00		100.31	

Gravel Content (%)=

10.94

Sand Content (%) =

78.29

Silt and clay %

10.77

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date of Testing : 24.10.12

Location : BH-1(Yamuna River-Ambala) Sampled by : T. K. Das

Depth : 40.5m Tested by : K.C. Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

86.94

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	10.41	10.41	10.41	89.59
2.00	35.14	35.14	45.55	54.45
0.425	29.24	29.24	74.79	25.21
0.075	12.15	12.15	86.94	13.06
Total	100.00			

Gravel Content (%)= 10.41

Sand Content (%) = 76.53 Silt and clay % 13.06

Remarks :-

1753

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client

: DFCC

Project Name

: G.I For 3 Nos. Important Bridges

Type of Sample

SPT

Date of Testing

24.10.12

Location

: BH-1(Yamuna River-Ambala)

Sampled by

T. K. Das

Depth

: 43.5m

Tested by

K.C .Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

84.30

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	0.00	0.00	0.00	100.00
2.00	37.57	37.57	37.57	62.43
0.425	33.25	33.25	70.82	29.18
0.075	13.48	13.48	84.30	15.70
Total	100.00			

Gravel Content (%)=

0.00

Sand Content (%) =

84.30

Silt and clay %

15.70

Remarks :-

4769

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

DFCC Client

Project Name G.I For 3 Nos. Important Bridges

Type of Sample

Location

Date of Testing

24.10.12

BH-1(Yamuna River-Ambala)

Sampled by

T. K. Das

Depth

Tested by

K.C.Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

84.52

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	0.00	0.00	0.00	100.00
2.00	36.81	36.81	36.81	63.19
0.425	32.06	32.06	68.87	31.13
0.075	15.64	15.64	84.51	15.49
Total	100.00			

Gravel Content (%)=

0.00

Sand Content (%) =

84.51

Silt and clay %

15.49

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date of Testing : 24.10.12

Location : BH-1(Yamuna River-Ambala) Sampled by : T. K. Das

Depth : 48.0m Tested by : K.C.Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

87.90

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	11.42	11.42	11.42	88.58
2.00	33.65	33.65	45.07	54.93
0.425	30.12	30.12	75.19	24.81
0.075	12.71	12.71	87.90	12.10
Total	100.00			

Gravel Content (%)=

Sand Content (%) = 76.48 Silt and clay % 12.10

11.42

Remarks :-

- 4771

N 3/91, IRC Village, Bhubaneswar

GRAIN SIZE ANALYSIS OF SOIL AS PER IS 2720 (P-4)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date of Testing : 24.10.12

Location : BH-1(Yamuna River-Ambala) Sampled by : T. K. Das

Depth : 50.0m Tested by : K.C.Sahoo

Weight of oven dried sample before washing (gm) :-

100.00

Weight of oven dried sample after washing (gm) :-

88.21

Sieve Size mm	Individual Weight Retained in gm.	Individual Wt. Retained In %	Cummulative Wt Retained In %	Cummulative Wt Passing In %
75	0	0.00	0.00	100.00
50	0	0.00	0.00	100.00
37.5	0	0.00	0.00	100.00
19	0	0.00	0.00	100.00
4.75	10.86	10.86	10.86	89.14
2.00	34.05	34.05	44.91	55.09
0.425	29.94	29.94	74.85	25.15
0.075	13.36	13.36	88.21	11.79
Total	100.00			

Gravel Content (%)=

10.86

Sand Content (%) =

77.35

Silt and clay %

11.79

Remarks :-

- F (! P

1	- 1																- 1			> _	1		20 00	
				Calibration of Hydrometer					1		1	A		v = -0.334x + 18.27				30	% Einner	w.r.t Wd F (12) x (13)	41	100.00	97.91	The same of the sa
				ion of H					1	*				v = -0.33		4	5	20		Factor N	13	4.554	4.554	ST. THE SHARE WAS A STATE OF THE STATE OF TH
				Calibrat			*	*	7									10	Dr.7 = Dh +	C (3) + (5)	12	21.96	21.50	The same of the sa
LTD		ДОН	25.00		20.00	4	/-	15.00	I.	a	10.00		3	2.00			0.00	0	Darticle 'C'	(cm) (8) x (10)	11	0.00709782	0.00505619	
OIA) PVT	var	ETER MET		30.0m	25.10.12	D.Mohanty		ETER	He (cm)	8.25	11.55	13.25	14.95	16.65	18.25	19.95				Factor M	10	0.012132344	0.012132344	
ARKI I ECHNO CONSULTANTS (INDIA) PVT LTD	N 3/91, IRC Village, Bhubaneswar	GRAIN SIZE ANALYSIS OF SOIL - HYDROMETER METHOD		Depth:	Date of Testing:	Tested by :		CALIBRATION OF HYDROMETER	H (cm)	0.7	4.0	5.7	7.4	9.1	10.7	12.4	ıding	H = height corresponding to Rh He = Fffective height = H + 0 5*(h -V/A)		Viscosity (gm/cm2)	6	0.000008341	0.0000008341	
SUL	Villag	OF SC						CALIBR/	(Rh)	8	20	15	10	5	0	-5	neter Rea	correspon		Sqrt (h/t)	8	0.585	0.417	
0000	3/91, IRC	ALYSIS						69.75	50	15.1	2.7	2.0	2.5	0.5			Rh = hydrometer Reading	H = height corresponding to Rh He = Effective height = H + 0.5*	-	Rc1 = Rh + Cm	7	24.46	24.00	•
ECHN:	Z	IZE AN													—	20	16.5	1 35.714	Effective	depth h (cm)	9	10.27	10.42	
ARKI TE		GRAIN S		Sridges		oala)		ve analysis)	(gm)	e (gm)	ĆI.	_	tem	,					Composite	Correction +/- C	5	-2.0	-2.0	
				G.I For 3 Nos. Important Bridges		BH-1(Yamuna River- Ambala)		Issing (from sie	im sieve taken	75micron siev	inicioni wii (gi	vdrometer sterr	n hydrometer s	(IV) - (IIV)] +:		cm3)		A) in cm2		Temperature (o C)	4	29	29	
			DFCC	G.I For 3 No	SPT	BH-1(Yamuı	T.K.Das	Percentage of 75 micron passing (from sieve analysis)	Mass of dry soil passing 2mm sieve taken (gm)	Mass of dry soil retained on 75micron sieve (gm)	Mass of ally soil passing 7.3 inicion vvii (gin). Specific gravity of soil grains. Gs	Top Meniscus reading on hydrometer stem	Bottom meniscus reading on hydrometer stem	Meniscuss correction, Cm = + [(VII) - (VI)]	r No	Volume of Hydrometer V (cm3)	Height of bulb (h) in cm	Sedimentation Jar No Cross sectional area of iar (A) in cm?		Hydrometer Reading (Rh)	3	23.96	23.50	
	ARKITECHNO COMELCTRATE ENDING PAT LTD.		••	Name :	Type of Sample:		d by :	Percentage	Mass of dr	Mass of dr	Specific ara	Top Meniso	Bottom me	Meniscuss	Hydrometer No	Volume of	Height of b	Sedimenta Cross secti	Flansed	Time (min)	2	0.5	-	
	ARKITE		Client	Project Name	Type of	Location	Sampled by	(1)			3					pi		4	.7	Fire 3	-	10.30		-

mass (14) w.r.t total

x (1)/100

15

69.75 68.29 65.12 65.12 63.53 63.53

4.554 4.554

0.00256829

0.012132344 0.012132344

0.00181606

0.00094506 0.00067335 0.00047970

0.012132344

0.012132344 0.012132344

0.056 0.040

22.00

-2.0 -2.0 -2.0 -2.0 -2.0

29

21.50

0.078

22.50

0.00133652

0.012132344

0.110

0.150

23.00

10.76

-2:0

10.92 10.92 11.09 11.26

-2.0

15 30 9

-2.0

29

4.554 4.554 4.554 4.554 4.554 4.554

66.71

95.64 93.36 93.36 91.08 91.08 88.80 86.53 84.25 81.97 80.99

4.554

21.00 20.50 20.50 20.00 20.00 19.50 19.00 18.50 18.00 17.78

0.012132344 | 0.00360380

0.000008341 0.000008341 0.000008341 0.000008341 0.000008341 0.000008341 0.000008341 0.000008341 0.000007821 0.000007821

0.297

23.50 23.00

10.59 10.76

-2.0 -2.0

29 29 29 29

23.00 22.50 22.50 22.00 22.00 21.50 21.00

2

4 8

0.212

60.35 58.76 57.18 56.49

4.554

0.011748049 0.000136489

0.012

20.28

11.66

0.020

0.028

21.00

11.42

32 33

20.50 20.00 19.78

240 480

120

1440

0.00023567 0.00034171

0.011748049

0.012132344

61.94

40

% Finner

	4		1	ARKI TE	CHN	O CON	ISUL	ARKI TECHNO CONSULTANTS (INDIA) PVT LTD	DIA) PVT	LTD				
ARKIT	ARKITECHNO COMMUNICATION CITE				Z	191, IRC	Villag	N 3/91, IRC Village, Bhubaneswar	var					
		To the second se		GRAIN SIZE ANALYSIS	ZE AN	ALYSIS	OF SO	SOIL - HYDROMETER METHOD	ETER MET	HOD.				
Client	50 50	: DFCC								25.00				
Projec	Project Name	: G.I For 3 No	G.I For 3 Nos. Important Bridges	3ridges				Depth :	36.0m		Calibrat	ion of Hy	Calibration of Hydrometer	
Type (Type of Sample	: SPT						Date of Testing:	25.10.12	20.00				
Location		: BH-1(Yamu	BH-1(Yamuna River- Ambala)	oala)				Tested by:	D.Mohanty	3				
Sampl	Sampled by	: T.K.Das								<u> </u>	*			
ΞĒ	Percentag	Percentage of 75 micron passing (from sieve analysis)	assing (from sie	ve analysis)		68.62	CALIBRA	CALIBRATION OF HYDROMETER	ETER	15.00	*			
	Mass of d	Mass of dry soil passing Zmm sleve taken (gm) Mass of dry soil retained on 75micron sleve (gm)	nm sieve taken 75micron siev	(gm) e (am)		50 15.7	(Kn)	H (CM)	He (cm)	E		1		
<u> </u>	Mass of d	Mass of dry soil passing 75 micron Wh (qm)	micron Wh (gr	n)		34.3	25	2.4	9.95	10.00		/	9	
3	Specific g	Specific gravity of soil grains, Gs	is, Gs			2.71	20	4.0	11.55				1	
<u>3</u>	Top Menis	Top Meniscus reading on hydrometer stem	ydrometer stem			2.0	15	5.7	13.25					
	Bottom m	Bottom meniscus reading on hydrometer stem	on hydrometer s	tem		2.5	10	7.4	14.95	5.00				
	Meniscus	Weniscuss correction, Cm = + [(VII) - (VI)	(IV) - (IIV) 1 + =	_	,	0.5	2	9.1	16.65			y = -0.33	y = -0.334x + 18.27	
ซ	Volume of Hydr	ometer	V (cm3)		- 20		ک ر ز	12.4	19.95					
	Height of				16.5	Rh = hydro	meter Reading			0.00		몺		
 Q	Sedimenta Cross sec	Sedimentation Jar No Cross sectional area of jar (A) in cm2	(A) in cm2		1 35.714	H = height He = Effect	corresponding to Rh tive height = H + 0.5	H = height corresponding to Rh He = Effective height = H + 0.5*(h -V/A)		0	10	20	30	40
Time		Hydrometer Reading (Rh)	Temperature (o C)	Composite Correction +/- C	Effective depth h (cm)	Rc1 = Rh + Cm	Sqrt (h/t)	Viscosity (gm/cm2)	Factor M	Particle 'C' (cm) (8) x (10)	Rc2 = Rh + C (3) + (5)	Factor	% Finner w.r.t Wd F (12) x (13)	% Finner w.r.t total mass (14)
-	2	3	4	5	9	7	8	6	10	11	12	13	14	15
10.30	0.5	23.65	29	-2.0	10.37	24.15	0.588	0.000008341	0.012096818	0.00711250	21.65	4.619	100.00	68.62
	-	23.50	29	-2.0	10.42	24.00	0.417	0.000008341	0.012096818	0.00504139	21.50	4.619	99.31	68.15
	2	23.00	29	-2.0	10.59	23.50	0.297	0.000008341	0.012096818	0.00359325	21.00	4.619	97.00	96.56
	4	22.50	29	-2.0	10.76	23.00	0.212	0.000008341	0.012096818	0.00256077	20.50	4.619	94.69	64.98
	80	22.00	29	-2.0	10.92	22.50	0.151	0.000008341	0.012096818	0.00182474	20.00	4.619	92.38	63.39
^	15	22.00	29	-2.0	10.92	22.50	0.110	0.000008341	0.012096818	0.00133260	20.00	4.619	92.38	63.39
4	30	21.50	29	-2.0	11.09	22.00	0.078	0.000008341	0.012096818	0.00094947	19.50	4.619	90.07	61.81
7	3 60	21.00	29	-2.0	11.26	21.50	0.056	0.000008341	0.012096818	0.00067641	19.00	4.619	87.76	60.22
7	120	20.50	29	-2.0	11.42	21.00	0.040	0.000008341	0.012096818	0.00048183	18.50	4.619	85.45	58.64
2	240	20.00	29	-2.0	11.59	20.50	0.028	0.000008341	0.012096818	0.00034319	18.00	4.619	83.14	57.05
	480	19.50	32	-2.0	11.76	20.00	0.020	0.000007821	0.011713648	0.00023667	17.50	4.619	80.83	55.47
	1440	19.05	32	-2.0	11.91	19.55	0.012	0.000007821	0.011713648	0.000137513	17.05	4.619	78.75	54.04
										1 20				

3	CITECHNO
D	ARKITE

ARKI TECHNO CONSULTANTS (INDIA) PVT LTD

N 3/91, IRC Village, Bhubaneswar

	GRAIN SIZE ANALYSIS OF SOIL - HYDROMETER METHOD	ALYSIS	OF SOII	L - HYDRON	IETER MET	HOD.				
	Client : DFCC					25.00				
	Project Name : G.I For 3 Nos. Important Bridges			Depth :	37.5m		Calibr	Calibration of Hydrometer	Irometer	1
•	Type of Sample: SPT		Ω	Date of Testing:	25.10.12	20.00				
_	_ocation : BH-1(Yamuna River- Ambala)		H	Tested by :	D.Mohanty					
	Sampled by T.K.Das						*			
	l) Percentage of 75 micron passing (from sieve analysis)	98.36	CALIBRAT	CALIBRATION OF HYDROMETER	IETER	15.00	*			
	 Mass of dry soil passing 2mm sieve taken (gm) 	20	(Rh)	H (cm)	He (cm)	I		*		
<u> </u>	III) Mass of dry soil retained on 75micron sieve (gm)	0.8	30	0.7	8.25	ە		*		
_	IV) Mass of dry soil passing 75 micron Wh (gm)	49.2	25	2.4	9.95	10.00		/	*	
_	 V) Specific gravity of soil grains, Gs 	2.67	20	4.0	11.55				1	
_	 VI) Top Meniscus reading on hydrometer stem 	2.0	15	5.7	13.25					
_	WII) Bottom meniscus reading on hydrometer stem	2.5	10	7.4	14.95	5				
	(VIII) Meniscuss correction, $Cm = + [(VII) - (VI)]$	0.5	2	9.1	16.65	00.0		v = -0.334x + 18.27	(+18.27	
10	Hydrometer No		0	10.7	18.25					
	Volume of Hydrometer V (cm3) 50		-5	12.4	19.95					
	Height of bulb (h) in cm	Rh = hydroi	Rh = hydrometer Reading	gu		0.00		Ψ.		
q	Sedimentation Jar No	H = height of	H = height corresponding to Rh	ig to Rh			6	00	20	
	717	1		1411 C		_	7	24	2	

/	*	*	*	1			y = -0.334x + 18.27		d c	KIII	10 20 30	2	
15.00	=	a	10.00			90	0.00			0.00	c	>	
ETER	He (cm)	8.25	9.95	11.55	13.25	14.95	16.65	18.25	19.95				
CALIBRATION OF HYDROMETER	H (cm)	0.7	2.4	4.0	5.7	7.4	9.1	10.7	12.4	ling	ing to Rh	He = Effective height = H + $0.5*(h - V/A)$	
CALIBRA	(Rh)	30	25	20	15	10	5	0	-5	Rh = hydrometer Reading	4 = height corresponding to Rh	ive height =	
98.36	20	0.8	49.2	2.67	2.0	2.5	0.5			Rh = hydro	H = height	He = Effect	
								_	50	16.5	-	35.714	
eve analysis)	(gm)	/e (gm)	E (E		_	stem						200 - 100 -	
ssing (from sie	ım sieve taken	75micron siev	micron Wh (g	s, Gs	drometer ster	n hydrometer a	(IV) - (IIV)] +:		cm3)			A) in cm2	
Percentage of 75 micron passing (from sieve analysis)	Mass of dry soil passing 2mm sieve taken (gm)	Mass of dry soil retained on 75micron sieve (gm)	Mass of dry soil passing 75 micron Wh (gm)	Specific gravity of soil grains, Gs	Top Meniscus reading on hydrometer stem	Bottom meniscus reading on hydrometer stem	Meniscuss correction, Cm = + [(VII) - (VI)]	er No	Volume of Hydrometer V (cm3)	Height of bulb (h) in cm	Sedimentation Jar No	Cross sectional area of jar (A) in cm2	
Percentag	Mass of d	Mass of d	Mass of d	Specific g	Top Meni	Bottom m	Meniscus	Hydrometer No	Volume o	Height of	Sediment	Cross sec	

	# # € C													
40	% Finner w.r.t total mass (14) × (1)/100	15	88.48	87.93	86.34	86.34	84.74	84.74	83.14	83.14	81.54	81.54	79.94	79.42
30	% Finner w.r.t Wd F (12) x (13)	14	89.95	89.40	87.77	87.77	86.15	86.15	84.52	84.52	82.90	82.90	81.27	80.74
20	Factor N	13	3.251	3.251	3.251	3.251	3.251	3.251	3.251	3.251	3.251	3.251	3.251	3.251
10	Rc2 = Rh + C (3) + (5)	12	27.67	27.50	27.00	27.00	26.50	26.50	26.00	26.00	25.50	25.50	25.00	24.84
0	Particle 'C' (cm) (8) x (10)	11	0.00646188	0.00458473	0.00327390	0.00231500	0.00165280	0.00120703	0.00086161	0.00060925	0.00043482	0.00030746	0.00021245	0.000123017
	Factor M	10	0.012240833	0.012240833	0.012240833	0.012240833	0.012240833	0.012240833	0.012240833	0.012240833	0.012240833	0.012240833	0.011853101 0.00021245	0.011853101 0.000123017
H = height corresponding to Rh He = Effective height = H + 0.5*(h -V/A)	Viscosity (gm/cm2)	6	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000008341	0.000007821	0.000007821
correspond ive height	Sqrt (h/t)	8	0.528	0.375	0.267	0.189	0.135	0.099	0.070	0.050	980.0	0.025	0.018	0.010
H = height corresponding to Rh He = Effective height = H + 0.5*	Rc1 = Rh + Cm	7	30.17	30.00	29.50	29.50	29.00	29.00	28.50	28.50	28.00	28.00	27.50	27.34
1 35.714	Effective depth h (cm)	9	8.36	8.42	8.58	8.58	8.75	8.75	8.92	8.92	60.6	60.6	9.25	9.31
	Composite Correction +/- C	5	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
A) in cm2	Temperature (o C)	4	59	29	29	29	29	29	29	29	29	29	32	32
Sedimentation Jar No Cross sectional area of jar (A) in cm2	Hydrometer Reading (Rh)	3	29.67	29.50	29.00	29.00	28.50	28.50	28.00	28.00	27.50	27.50	27.00	26.84
Sedimenta Cross sec	Elapsed Time (min)	2	0.5	1	2	4	8	15	30	09	120	240	480	1440
.q	- Time	-	10.30	Ж	p+.			7	71.9					

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

: 1.5m

Type of Sample : SPT

Location

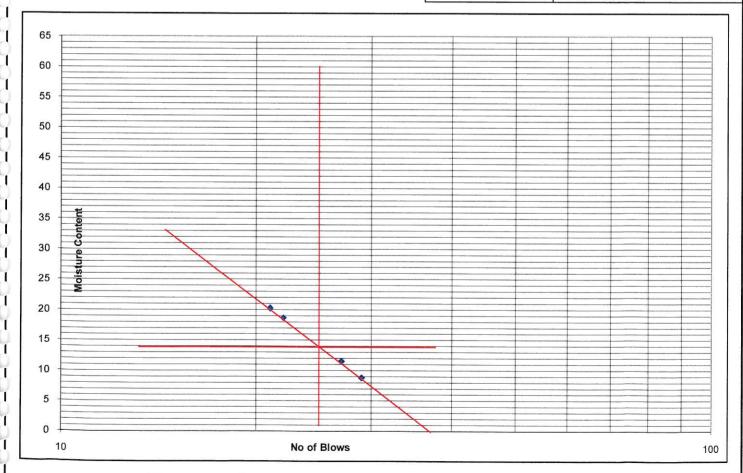
Depth

BH-1(Yamuna River-Ambala)

Date Of Testing

: 25.10.12

Sampled by


: T.K.Das

Tested by

: D.Mohanty

Number of Blows	29	27	22	21	Plastic Limit
Container No.	C11	C12	C17	C18	NP
Container Weight (gm) (W1)	31.85	36.97	30.76	32.24	
Container + Wt. of wet soil (gm) (W2)	82.22	94.46	96.10	98.39	
Wt of Container + Wt. of oven dry soil (gm) (W3)	78.13	88.52	85.82	87.26	
Wt. Of water (gm) (W2-W1)-(W3-W1)	4.09	5.93	10.28	11.13	
Wt. of oven dry soil (gm) (W3-W1)	46.28	51.55	55.06	55.02	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	8.84	11.51	18.68	20.23	

Liquid Limit (WL)	14	%	
Plastic Limit (Wp)	_	%	
Plasticity Index (Ip)	_	%	

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client

: DFCC

Project Name

G.I For 3 Nos. Important Bridges

Type of Sample

: SPI

Date Of Testing

: 25.10.12

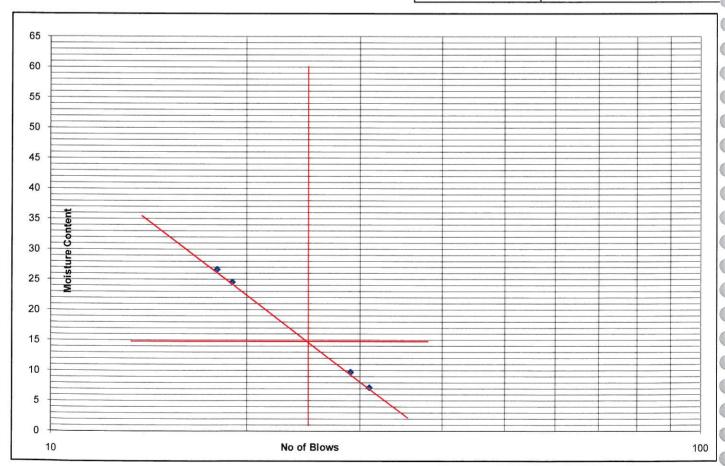
Location

: BH-1(Yamuna River-Ambala)

Sampled by

: T.K.Das

Depth


3.0m

Tested by

: D.Mohanty

Number of Blows	31	29	19	18	Plastic Limit
Container No.	C7	C8	C9	C10	
Container Weight (gm) (W1)	32.58	37.21	33.14	35.42	
Container + Wt. of wet soil (gm) (W2)	81.10	93.94	98.91	101.05	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.84	88.92	85.94	87.25	
Wt. Of water (gm) (W2-W1)-(W3-W1)	3.26	5.03	12.96	13.80	
Wt. of oven dry soil (gm) (W3-W1)	45.26	51.71	52.80	51.83	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	7.21	9.72	24.55	26.62	

Liquid Limit (WL)	15	%
Plastic Limit (Wp)	_	%
Plasticity Index (Ip)	_	%

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

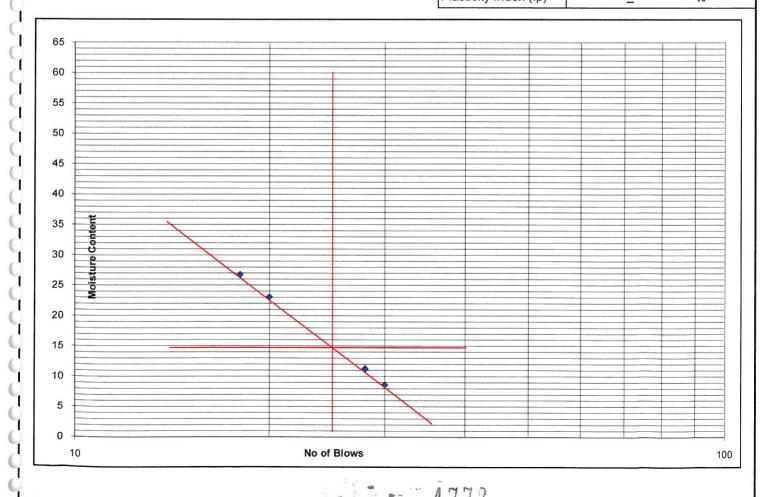
IS: 2720 (Part -5)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date Of Testing : 25.10.12
Location : BH-1(Yamuna River-Ambala) Sampled by : T.K.Das

Depth : 4.5m Tested by : D.Mohanty


Number of Blows	30	28	20	18	Plastic Limit
Container No.	C15	C16	C17	C18	NP
Container Weight (gm) (W1)	33.14	32.28	30.76	32.24	
Container + Wt. of wet soil (gm) (W2)	81.51	95.31	98.60	101.85	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.68	88.94	85.88	87.17	
Wt. Of water (gm) (W2-W1)-(W3-W1)	3.83	6.37	12.71	14.68	
Wt. of oven dry soil (gm) (W3-W1)	44.54	56.66	55.12	54.93	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	8.59	11.24	23.06	26.73	

 Result Summary

 Liquid Limit (WL)
 15
 %

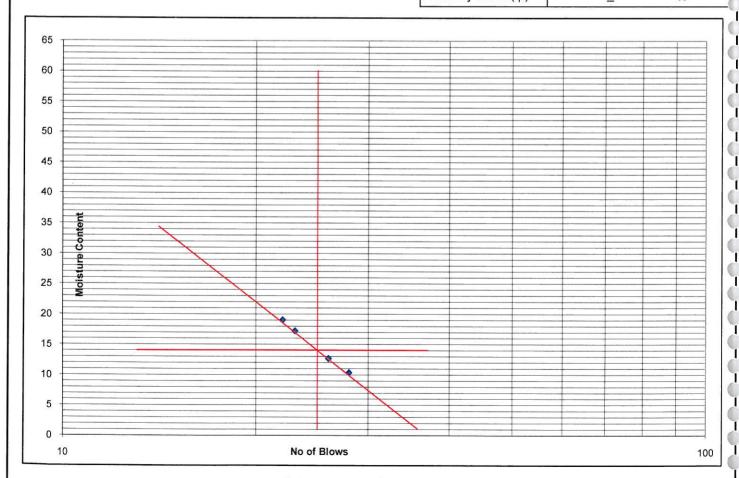
 Plastic Limit (Wp)
 _
 %

 Plasticity Index (Ip)
 _
 %

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)


Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date Of Testing : 25.10.12
Location : BH-1(Yamuna River-Ambala) Sampled by : T.K.Das

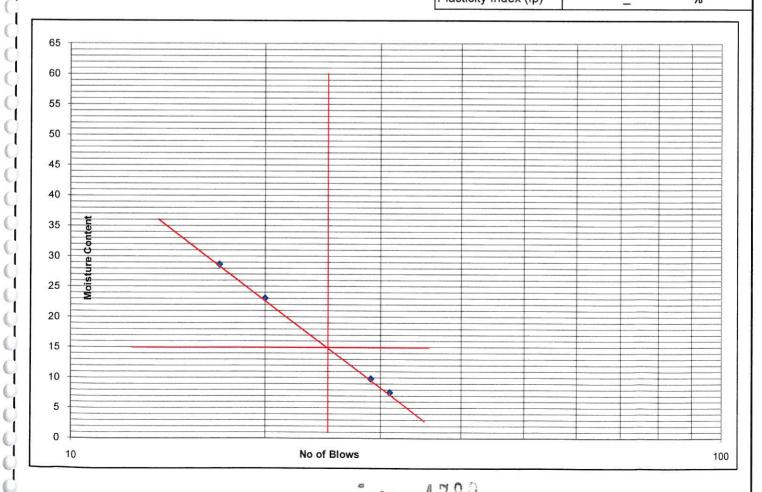
Depth : 6.0m Tested by : D.Mohanty

Number of Blows	28	26	23	22	Plastic Limit
Container No.	C29	C30	C25	C26	NP
Container Weight (gm) (W1)	34.86	30.76	35.83	33.36	
Container + Wt. of wet soil (gm) (W2)	81.92	96.35	94.36	97.54	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.51	88.97	85.75	87.29	
Wt. Of water (gm) (W2-W1)-(W3-W1)	4.41	7.38	8.60	10.26	
Wt. of oven dry soil (gm) (W3-W1)	42.65	58.21	49.92	53.93	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	10.35	12.68	17.23	19.02	

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)


Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date Of Testing : 25.10.12
Location : BH-1(Yamuna River-Ambala) Sampled by : T.K.Das

Depth : 10.5m Tested by : D.Mohanty

Number of Blows	31	29	20	17	Plastic Limit
Container No.	C13	C14	C15	C16	NP
Container Weight (gm) (W1)	39.64	36.34	33.14	32.28	
Container + Wt. of wet soil (gm) (W2)	80.81	94.82	98.09	103.47	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.93	89.59	85.92	87.62	
Wt. Of water (gm) (W2-W1)-(W3-W1)	2.88	5.23	12.17	15.84	
Wt. of oven dry soil (gm) (W3-W1)	38.29	53.25	52.78	55.34	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	7.53	9.82	23.05	28.63	

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client

DFCC

Project Name

G.I For 3 Nos. Important Bridges

BH-1(Yamuna River-Ambala)

Type of Sample

Date Of Testing

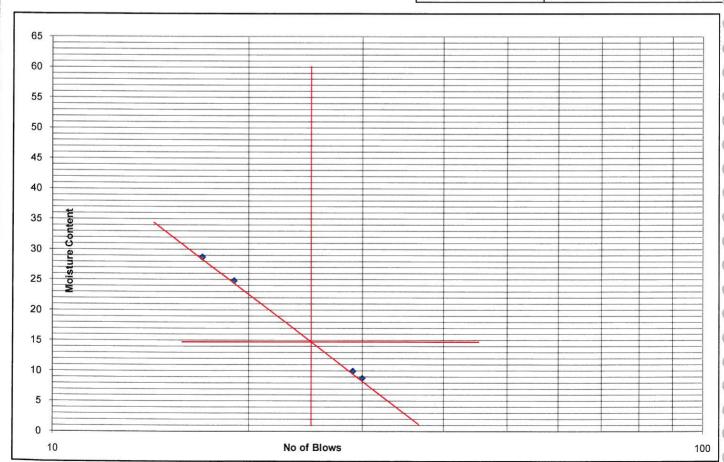
: 25.10.12

Location

Sampled by

: T.K.Das

Depth


13.5m

Tested by

: D.Mohanty

Number of Blows	30	29	19	17	Plastic Limit
Container No.	C1	C2	C3	C4	NP
Container Weight (gm) (W1)	33.6	34.2	36.7	32.65	
Container + Wt. of wet soil (gm) (W2)	81.54	94.95	98.27	103.15	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.67	89.47	86.04	87.44	
Wt. Of water (gm) (W2-W1)-(W3-W1)	3.87	5.48	12.23	15.72	
Wt. of oven dry soil (gm) (W3-W1)	44.07	55.27	49.34	54.79	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	8.79	9.91	24.79	28.69	

	toodit odillille	y
Liquid Limit (WL)	15	%
Plastic Limit (Wp)	_	%
Plasticity Index (Ip)	_	%

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

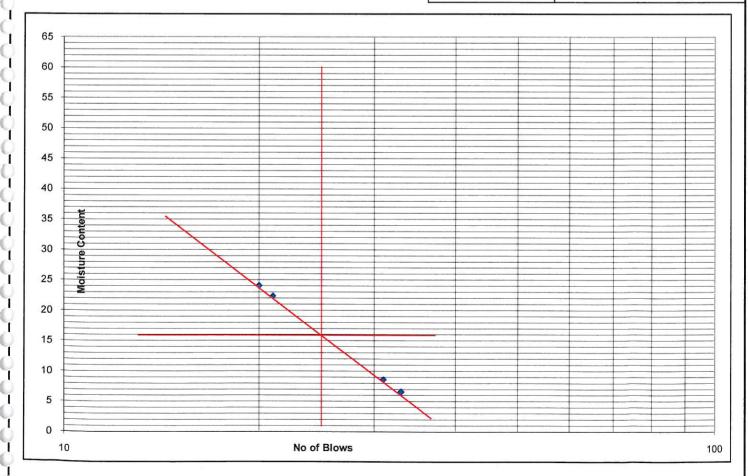
Date Of Testing

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT

Location : BH-1(Yamuna River-Ambala) Sampled by : T.K.Das


Depth : 16.5m Tested by : D.Mohanty

Number of Blows	33	31	21	20	Plastic Limit
Container No.	C19	C20	C37	C38	NP
Container Weight (gm) (W1)	30.48	35.24	38.52	37.22	
Container + Wt. of wet soil (gm) (W2)	80.64	94.15	97.08	99.66	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.54	89.48	86.37	87.55	
Wt. Of water (gm) (W2-W1)-(W3-W1)	3.10	4.68	10.71	12.10	
Wt. of oven dry soil (gm) (W3-W1)	47.06	54.24	47.85	50.33	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	6.58	8.62	22.37	24.05	

Result Summary

Liquid Limit (WL)	16	%	
Plastic Limit (Wp)	_	%	
Plasticity Index (Ip)	_	%	

: 25.10.12

Depth

Arki Techno Consultants (India) Pvt.Ltd

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

18.0m

Type of Sample : SPT

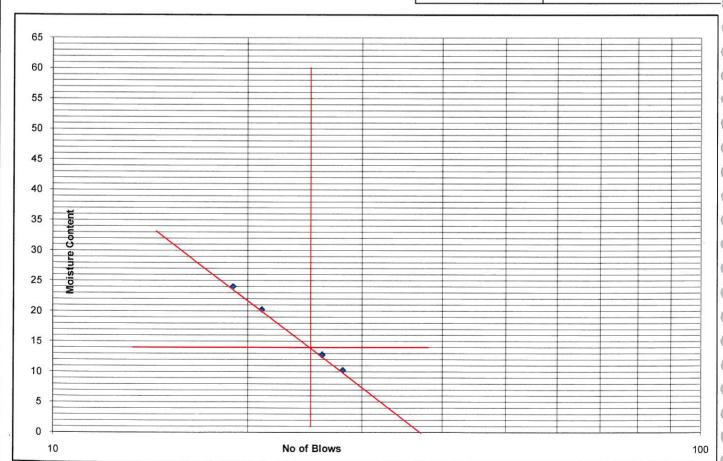
Location : BH-1(Yamuna River-Ambala)

Date Of Testing ; 25

25.10.12

Sampled by

: T.K.Das


Tested by

: D.Mohanty

Number of Blows	28	26	21	19	Plastic Limit
Container No.	C41	C42	C27	C28	NP
Container Weight (gm) (W1)	37.6	35.55	31.2	39.42	
Container + Wt. of wet soil (gm) (W2)	81.50	96.27	97.57	99.26	
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.41	89.39	86.38	87.67	
Wt. Of water (gm) (W2-W1)-(W3-W1)	4.08	6.89	11.19	11.59	
Wt. of oven dry soil (gm) (W3-W1)	39.81	53.84	55.18	48.25	
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	10.26	12.79	20.27	24.01	

Result Summary

The state of the s		
Liquid Limit (WL)	14	%
Plastic Limit (Wp)	_	%
Plasticity Index (Ip)	_	%

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client DFCC

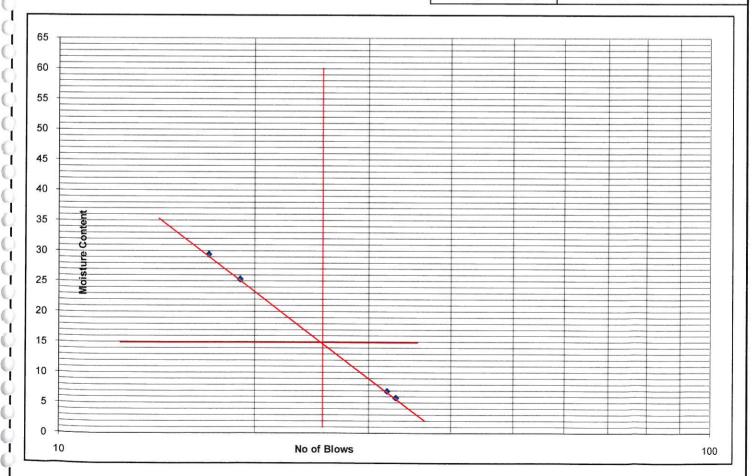
Location

Project Name G.I For 3 Nos. Important Bridges

Type of Sample

Date Of Testing BH-1(Yamuna River-Ambala) Sampled by

Depth 21.0m Tested by : D.Mohanty


Number of Blows	33	32	19	17	Plastic Limit	
Container No.	C5	C6	C21	C22	NP	
Container Weight (gm) (W1)	31.26	30.12	37.88	34.61		
Container + Wt. of wet soil (gm) (W2)	79.97	92.89	97.94	103.22		
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.29	88.82	85.81	87.65		
Wt. Of water (gm) (W2-W1)-(W3-W1)	2.68	4.07	12.13	15.58		
Wt. of oven dry soil (gm) (W3-W1)	46.03	58.70	47.93	53.04		
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	5.82	6.93	25.30	29.37		

Result Summary

Liquid Limit (WL)	15	%	
Plastic Limit (Wp)	_	%	
Plasticity Index (Ip)	_	%	

: 25.10.12

: T.K.Das

N 3/91, IRC Village, Bhubaneswar

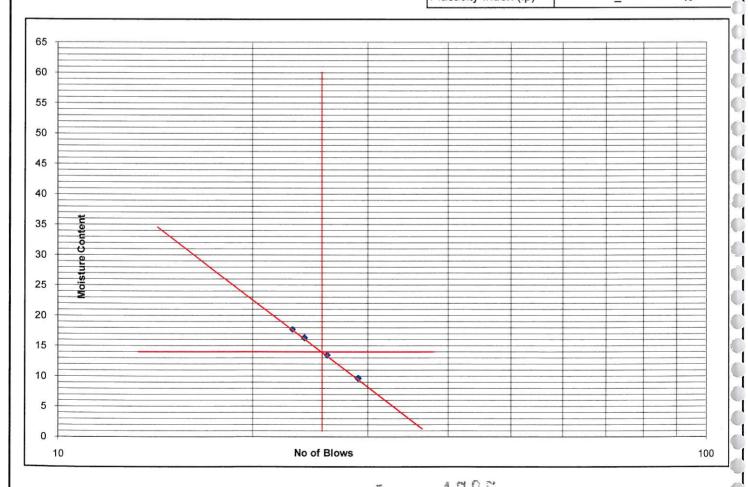
DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date Of Testing : 25.10.12


Location : BH-1(Yamuna River-Ambala) Sampled by : T.K.Das

Depth : 22.5m Tested by : D.Mohanty

Number of Blows	29	26	24	23	Plastic Limit	
Container No.	C35	C36	C39	C40	NP	
Container Weight (gm) (W1)	37.73	30.99	39.43	30.5		
Container + Wt. of wet soil (gm) (W2)	81.71	96.75	93.97	97.66		
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.83	88.95	86.32	87.55		
Wt. Of water (gm) (W2-W1)-(W3-W1)	3.87	7.80	7.65	10.11		
Wt. of oven dry soil (gm) (W3-W1)	40.10	57.96	46.89	57.05		
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	9.66	13.46	16.32	17.73		

Liquid Limit (WL) 14 %

Plastic Limit (Wp) _ %
Plasticity Index (Ip) _ %

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

Client

: DFCC

Project Name

G.I For 3 Nos. Important Bridges

BH-1(Yamuna River-Ambala)

Type of Sample

SPT

Date Of Testing

: 26.10.12

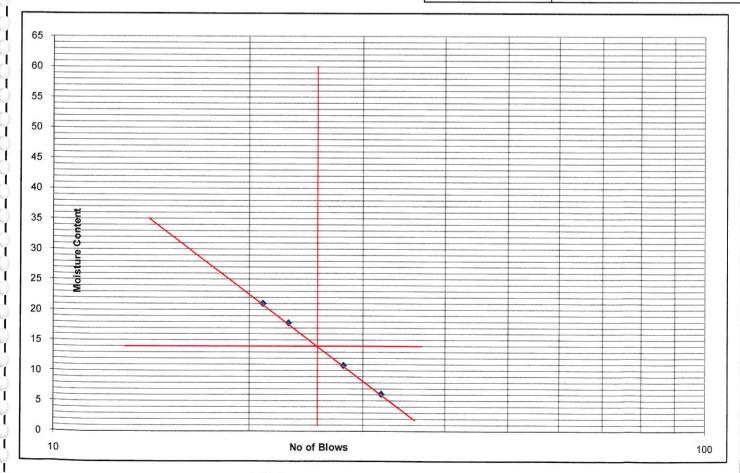
Location

SPI

Sampled by

: T.K.Das

Depth


27.0m

Tested by

: D.Mohanty

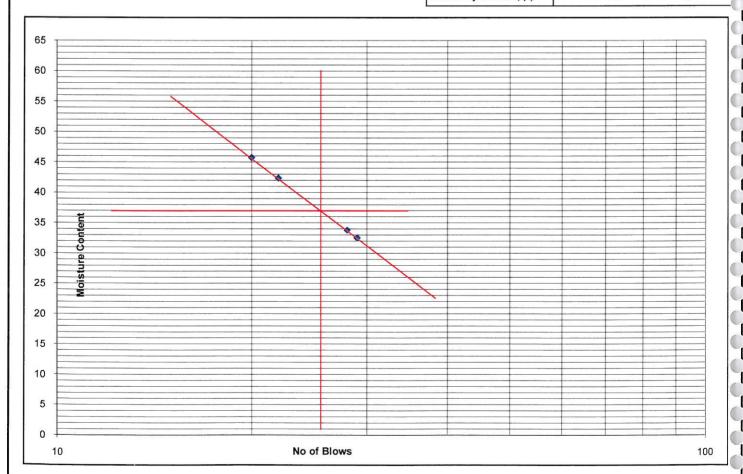
Number of Blows	32	28	23	21	Plastic Limit	
ontainer No.	C31	C32	C33	C34	NP	
Container Weight (gm) (W1)	30.8	38.08	32.47	31.56		
Container + Wt. of wet soil (gm) (W2)	80.80	94.79	96.66	99.30		
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.91	89.25	86.96	87.53		
Wt. Of water (gm) (W2-W1)-(W3-W1)	2.89	5.54	9.69	11.77		
Wt. of oven dry soil (gm) (W3-W1)	47.11	51.17	54.49	55.97		
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	6.13	10.83	17.79	21.03	4.53	

		,
Liquid Limit (WL)	14	%
Plastic Limit (Wp)	_	%
Plasticity Index (Ip)	_	%

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)


Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date Of Testing : 26.10.12
Location : BH-1(Yamuna River-Ambala) Sampled by : T.K.Das

Depth : 30.0m Tested by : D.Mohanty

Number of Blows	29	28	22	20	Plasti	c Limit
Container No.	A37	A38	A39	A40	A41	A42
Container Weight (gm) (W1)	30.18	33.67	35.48	31.39	32.16	35.55
Container + Wt. of wet soil (gm) (W2)	93.48	108.30	107.28	113.18	97.65	96.98
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.95	89.45	85.92	87.52	88.16	88.52
Wt. Of water (gm) (W2-W1)-(W3-W1)	15.53	18.85	21.36	25.66	9.49	8.46
Wt. of oven dry soil (gm) (W3-W1)	47.77	55.78	50.44	56.13	56.00	52.97
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	32.51	33.79	42.34	45.71	16.95	15.98

N 3/91, IRC Village, Bhubaneswar

DETERMINATION OF LIQUID LIMIT AND PLASTIC LIMIT

IS: 2720 (Part -5)

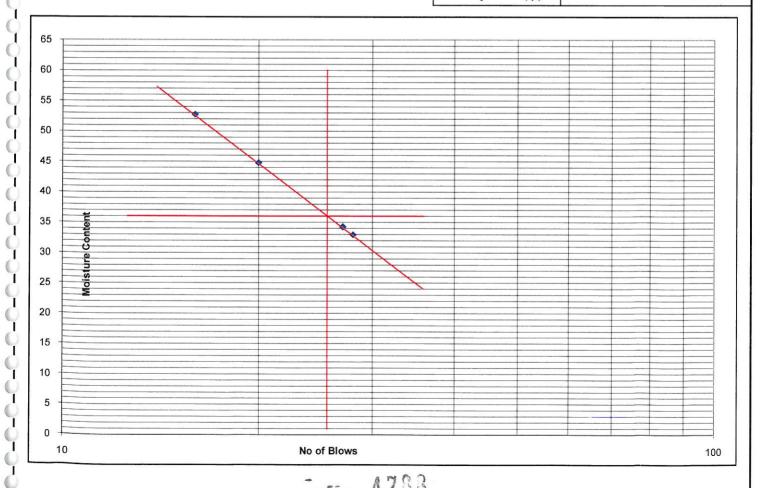
Client : DFCC

Project Name : G.I For 3 Nos. Important Bridges

Type of Sample : SPT Date Of Testing : 26.10.12

Location : BH-1(Yamuna River-Ambala) Sampled by : T.K.Das

Depth : 36.0m Tested by : D.Mohanty


Number of Blows	28	27	20	16	Diactio	o Limit
Trainber of blows	20	21	20	16	Plastic Limit	
Container No.	A31	A32	A33	A34	A35	A36
Container Weight (gm) (W1)	35.64	34.29	32.47	31.56	30.22	33.47
Container + Wt. of wet soil (gm) (W2)	91.59	108.39	109.54	117.01	97.53	97.07
Wt of Container + Wt. of oven dry soil (gm) (W3)	77.73	89.49	85.70	87.51	88.74	88.84
Wt. Of water (gm) (W2-W1)-(W3-W1)	13.87	18.90	23.84	29.50	8.79	8.23
Wt. of oven dry soil (gm) (W3-W1)	42.09	55.20	53.23	55.95	58.52	55.37
Moisture Content (%)= [(W2-W1)-(W3-W1)]/(W3-W1) X 100	32.95	34.23	44.79	52.73	15.02	14.86

 Result Summary

 Liquid Limit (WL)
 36
 %

 Plastic Limit (Wp)
 15
 %

 Plasticity Index (Ip)
 21
 %

